Subscribe via E-mail

Your email:

Follow Us!

Headwall Photonics Blog

Current Articles | RSS Feed RSS Feed

Headwall Names Tom Breen as Director of Global Sales

 

Growth Markets Require Solid Industry Background Across Commercial and Defense Markets 

Fitchburg, MA – June 6, 2014 – With a rapid expansion of international business, Headwall Photonics announced today that Tom Breen has joined the Company as Director of Global Sales. Tom brings with him significant experience across many of the end-user markets served by Headwall. He will be responsible for managing Headwall’s growing worldwide sales activities and strategic opportunities for hyperspectral and Raman imagers as well as the Company’s OEM integrated spectral instrumentation.

Tom BreenPrior to joining Headwall, Tom held executive leadership positions at UTC Aerospace Systems where he was responsible for sales and business development of airborne and hand-held products. He also served as Vice President of Sales and Marketing for General Dynamic’s Axsys Technology Division in Nashua, New Hampshire. Other senior management positions at L-3 Communications, BAE Systems, and Lockheed Martin provided Tom with the background that will allow Headwall to grow its business in the hyperspectral imaging market.

“We are thrilled that Tom has joined our team,” said Headwall CEO David Bannon. “His background complements our commercial growth plans seamlessly and he will be a terrific asset in tackling a market that is experiencing very robust growth. Tom has had significant success in building high performance sales teams coupled with exceptional customer relationships.”

“I am very excited to be joining Headwall at a period of tremendous momentum for the Company and the industry,” said Tom. “As a leading supplier of spectral instrumentation, Headwall is uniquely poised to expand and deliver hyperspectral sensors and OEM instruments for remote sensing and in-line applications.”

Headwall’s award-winning Hyperspec and Raman imagers are used in commercial and military airborne applications, in advanced machine-vision systems, for document and artifact care, for plant genomics, in medicine and biotechnology, and for remote sensing. A unique differentiator for the Company is Headwall’s patented all-reflective, aberration-corrected optical technology that is fundamental to every system it produces.

Tom is a published author, with numerous works produced for IEEE, SPIE, and AAAE. Tom’s educational background includes MBA and BSEE degrees from Northeastern University in Boston.

Far Away and Long Ago: Hyperspectral Imaging Plays Key Role

 

Hyperspectral imaging sheds new light on prized Martian rock specimen

Scientists have forever been fascinated with space. What’s up there? Does life as we know it exist elsewhere? Is there any other celestial body like earth?  While these questions might lack solid and precise answers, it’s not for lack of trying. Knowledge often comes not from massive ‘Ah-HA!’ moments, but from smaller discoveries.  When stitched together, these jewels of learning present a useful mosaic for future scientists.

Black BeautyA two billion-year-old meteorite—officially named NWA 7034 but nicknamed Black Beauty by scientists—recently crashed into the Sahara desert. It was found by scientists in 2011 and determined to be of Martian origin two years later. The geologic history of Mars has always been a fertile source of exploration given the never-ending interest in this relatively nearby yet mysterious planet. While exploring the Martian landscape provides a wealth of scientific data, this meteorite has itself been a goldmine of information. Why? Because it sheds light not on the Mars of here-and-now, but on what we believe happened 2.1 billion years ago to its geologic interior and surface.

The Black Beauty meteorite was lofted off the martian surface by a large impact, an explosive geologic event. The intrinsic value of the rocks can be appreciated mostly because they carry a snapshot of what the conditions were like on Mars at the moment the impact occurred. The Mars of today is fascinating, yes, but to have a sample of Mars from 2.1 billion years ago is more fascinating still. Indeed, Black Beauty is significantly older than almost all other Martian meteorites yet found.

In early 2014, a Brown University research team led by Dr. Jack Mustard and graduate student Kevin Cannon temporarily acquired a slice of Black Beauty from Dr. Carl B. Agee, Director of the Institute of Meteoritics at New Mexico University. Brown University analysis included hyperspectral imaging using Headwall’s VNIR (380-1000nm) and SWIR (950-2500nm) sensors to extract a wealth of meaningful spectral data. "We were really presented with a one-of-a-kind specimen in Black Beauty," noted Dr. Mustard. "We wanted to learn as much as we could and add to the body of geologic knowledge already accumulated."

BlackBeauty Headwall colorThe team paired the two sensors in Headwall’s 'Starter Kit' configuration, which comprises a moving stage, necessary and proper illumination, and full software control to manage the collection and post-processing of the incoming data. "What we saw as we ‘unpacked’ the data is that Black Beauty is rich in information that give us a clue as to what Mars was like over two billion years ago," said Cannon. "While rovers on Mars today are extracting important new data, to have an actual sample that we can analyze with our most sophisticated instruments is exciting."

In the adjacent hyperspectral image of Black Beauty, features become clear. The mineral feldspar shows up as green, and the mineral pyroxene comes out as yellow/red. "These two minerals make up most of the Martian crust, so it's exciting that we can see them and map them out spatially in the data," said Cannon.

There are a few characteristics of hyperspectral imaging that make it perfect for this sort of work. First, it is a non-invasive technology. That is, no samples are harmed or even touched. This is crucial, and the non-invasive nature of hyperspectral imaging lends itself not only to the study of Martian rocks like Black Beauty, but also the field of fine arts, artifacts and antiquities. Museums and collection-care experts are themselves seeing the value of hyperspectral imaging because of the amount of new information that can be collected non-invasively.

As a scanning technology, hyperspectral imaging is designed to ‘see the unseen’ and unlock the answers to challenging questions. There are numerous ‘imaging’ and ‘scanning’ techniques available to the scientific research community, but none possess the vast spatial and spectral information collected by Headwall’s instruments. "What we have been able to do is successfully introduce a brand-new tool into our toolbox and prove its value," said Dr. Mustard. "We saw things in the VNIR and SWIR spectral ranges that no one has seen before, and our overall body of knowledge is more expansive because of it." Hyperspectral imaging collects ALL the spatial and spectral data within the field of view, not just some of it (as is the case with multi-spectral).

And what about closer to home, here on earth? Hyperspectral imaging is becoming more mainstream and affordable so that research entities like Dr. Mustard’s group at Brown can tackle projects like these more readily than ever. Graduate student Rebecca Greenberger has done similar hyperspectral analysis on rock and geological formations that many of us drive by without glancing twice. "There’s a rock formation behind a Target store in Connecticut that is just loaded with incredible geological samples," said Greenberger. Many of those collected rock specimens have themselves been scanned with Headwall’s hyperspectral instruments, yielding spectacular results and new information about the geological history of our planet.

Hyperspectral Takes Wing Over Ontario!

 

UASUnder cloudless skies in Ontario recently, Headwall achieved a very notable milestone: we became the first to fly both hyperspectral and LiDAR aboard a small, fully integrated handheld UAS. The test flights not only verified the reliable airworthiness of the system but also the ability to collect valuable hyperspectral and LiDAR data in real time.

Integration is key, because all of this specialized data-collecting instrumentation needs to fit the payload parameters with respect to size and weight. With UAS systems shrinking in size and weight, payloads need to follow suit. As prime contractor for this complete airborne system, Headwall is able to get end-users up and running quicker than ever. Time to deployment is reduced by months thanks to the work Headwall is doing to engineer optimized solutions that meet specific remote-sensing needs.

“The variety of applications for this type of integrated airborne system are numerous,” said Headwall CEO David Bannon. “Precision agriculture is a key one we’re seeing on a global scale, but geology, pipeline inspection, environmental research, pollution analysis are others.” Today’s UAS is smaller, lighter, and more affordable than ever, which makes it a perfect platform from which to carry precise imaging instruments such as hyperspectral and LiDAR. “We’ve always been a pioneer in the area of small hyperspectral sensors for just these kind of deployments,” noted Bannon. “Our strength comes from understanding what our users want to do and then engineering a complete airborne solution that meets that need.”

Chris Van Veen, marketing manager at Headwall, was on site to record and document the test flights. “A fully integrated package like this represents a new frontier for remote-sensing scientists who now have an airborne research platform that goes wherever they do,” says Chris. “Watching this fly and collect data in Canada was a thrill because it was visible testimony to all our integration work.”

The entire payload aboard this particular UAS is less than ten pounds, which includes hyperspectral, GPS/IMU, LiDAR, and computing hardware. Besides making sure these elements are small and light enough, the challenge of integrating everything with an eye toward battery lifetime is also Headwall’s to manage. “We know our remote-sensing users have very important work to do, and they need sufficient power not only to fly but also to operate the instruments,” said Bannon. One way to meet this challenge head-on is to make sure the hyperspectral sensor provides a very wide field of view with precise imagery from one edge to the other. “If you can assure outstanding image-collection across a wide field of view, and then provide orthorectification of that data, you’re covering more ground for each flight swath.”

Fundamental to accomplishing this is Headwall’s approach to optics, which is both simple and elegant. “Our diffractive optics approach uses no moving parts, which, in an airborne application, means robustness and reliability,” said Bannon. Inside each Micro-Hyperspec sensor is a precise and small holographic diffraction grating that manages incoming light with exceptional fidelity. These sensors are ‘tuned’ for the spectral range of interest to the user. “Depending on what the user wants to ‘see,’ he may need a VNIR sensor that operates from 380-1000 nanometers,” said Bannon. The spectral signature of a certain disease condition on a crop tree will determine the spectral range of the sensor, for example. Headwall has also introduced a wideband VNIR-SWIR sensor package that covers from 400-2500 nanometers. This co-registered hyperspectral instrument will be very popular with users who need broad coverage but need a small, light, and affordable instrument to do it with.

The following video will give you a peek into how flight testing went in Ontario.

History Made, History Seen with Hyperspectral Imaging

 

As the market for hyperspectral sensing technology moves forward and advances, Headwall’s Application Engineering team has been able to gather a rare view into the past through the hyperspectral scanning of some of the most important historical artifacts and papers in the United States. For the first time ever, hyperspectral VNIR and SWIR imaging was conducted on key historical documents from the US Civil War period.

The Gettysburg AddressBy working collaboratively with the researchers in the Cornell University Division of Rare and Manuscript Collections and the Cornell Johnson Museum of Art, Janette Wilson and Kwok Wong of Headwall’s Application Engineering team spent a few days conducting VNIR and SWIR hyperspectral scans of some of the most important artifacts held by Cornell University. Of particular interest was the hyperspectral scanning of the University’s collection of original Lincoln documents signed by president Abraham Lincoln during his presidency. This collection included the Gettysburg Address (seen at left), the Emancipation Proclamation, and the 13th Amendment to the Constitution.

The scanning of documents and artifacts with hyperspectral imagers is particularly well suited for the purposes of both 1) research and 2) for establishing a baseline of spectral/spatial information for monitoring change in the artifacts to better preserve objects of cultural heritage.

For a couple main reasons, hyperspectral imaging is particularly appealing to collection-care experts. First, and probably most important, is that the technology is non-destructive. The instruments don't interface with the documents and the lighting is called 'cold illumination.' That is, there is no risk of themal damage to the items under inspection. Second, previously unseen features immediately 'come to light' when viewed hyperspectrally. Note the image below, which represents a stamp on the Gettysburg Address that cannot be seen visibly but can when looked at within the VNIR and SWIR spectral range. Collection-care experts are fascinated by unseen features, which can be used to build the body of knowledge with respect to documents or artifacts.

Unseen Features

Hyperspectral Sensors for UAV Applications

 

The scientific research community is beginning to understand and embrace hyperspectral imaging as a useful tool for a few primary reasons. First, sensors are more affordable than ever. Originally conceived as multi-million-dollar ISR platforms for defense applications, hyperspectral imagers have been successfully ‘commercialized’ over the past few years. Scientists typically embracing RGB or multispectral technology before can now acquire hyperspectral sensors at affordable price points.

Hyperspectral sensors of the ‘pushbroom’ type produced by Headwall require motion to occur. That is, either the sensor flies above the field of view, or the field of view moves beneath the sensor. For UAV applications, Headwall’s small and lightweight Micro-Hyperspec is the platform of choice. Available in the VNIR (380-1000nm), NIR (900-1700nm), and SWIR (950-2500nm) spectral ranges, the sensor is truly ‘SWaP-friendly.’

Spectral range is often where the decision-making starts. The chemical fingerprint—or spectral signature—of anything within the field of view will lead the user in one direction or another. For example, a certain disease condition on a tree canopy may become ‘visible’ within the SWIR spectral range (950-2500nm). Similarly, a certain mineral deposit may become ‘visible’ in the VNIR range (380-1000nm). One approach to ensuring the spectral ‘fidelity’ of images collected by the sensor makes use of ‘diffractive optics’ comprising aberration-corrected holographic gratings. This ‘Aberration-corrected concentric’ design is shown below.

concentric imager

There are several advantages to this ‘reflective’ approach. First, the design is simple, temperature insensitive, and uses no moving parts. This assures robustness and reliability in airborne situations. Second, diffraction gratings can be made very small so that the instruments themselves can be small and light; in other words, capable of fitting the new class of lightweight, hand-launched UAVs. Third, the design optimizes technical characteristics that are most important: low distortion for high spatial and spectral resolution; high throughput for high signal-to-noise; and a tall slit for a wide field-of-view. Because the design is an all-reflective one, chromatic dispersion is eliminated and excellent focus is assured across the entire spectral range.

Many within the environmental research community and across ‘precision agriculture’ prefer to use UAVs as their primary airborne platform. They are more affordable than fixed-wing aircraft and easy to launch. But as UAVs get smaller and lighter, so must the payloads they carry. And integrating the sensor into the airframe along with other necessities such as LiDAR, power management/data collection hardware, and cabling can be a daunting task (Figure 3). Orthorectification of the collected data is another key requirement, which is the means by which the hyperspectral data cube is ‘managed’ into useful information that has been ‘corrected’ for any airborne anomalies. In other words, the collected hyperspectral data needs to be ‘true’ to what’s actually within the field of view.

 Micro Hyperspec

Acquiring a UAV and a hyperspectral sensor won’t assure compatible performance, and a high level of ‘integration work’ is needed. The UAV community and the hyperspectral sensor community are both challenged with pulling everything together. Recognizing this, Headwall Photonics is taking an industry-leading position as a supplier of fully integrated airborne solutions comprising the UAV, the sensor, the power and data management solution, cabling, and application software. The result is that users are flying sooner and collecting better hyperspectral data than ever before.

Type of UAV is very often one of the first decisions a scientist will need to make. Fixed-wing and multi-rotor are the two general categories, with numerous styles and designs within each. In-flight stability and flight-time duration are both paramount concerns, and this is where payload restrictions will often point toward one or the other. Multi-rotor UAVs launch and land vertically, so this type will be favored in situations where space is tight. Conversely, a fixed-wing UAV requires suitable space to launch and land but can provide longer flight duration and carry a heavier payload. The wide field-of-view characteristic of the concentric imager allows a UAV to ‘see’ more ground along its flight path.

Integrated airborne package

Two other key areas managed through Headwall’s integrative process are data management and application software. While a separate subsystem is used to control the sensor operation and store the hyperspectral data, the direction is clearly toward on-board integration of these capabilities. Flash storage and solid-state drives will soon make it possible for the sensor to ‘contain’ all the related functionality that now needs to be contained in a separate module. This will clearly lighten the overall payload, reduce battery consumption, and boost airborne flight time.

Headwall’s Hyperspec III software represents a complete, modularized approach to the management of hyperspectral data. Orthorectification is one such module within the software suite that removes the unwanted effects airborne behavior. The resultant orthorectified images have a constant scale wherein features are represented in their 'true' positions. This allows for the accurate direct measurement of distances, angles, and areas. Other aspects of the software suite can be used to control GPS/IMU devices, control multiple sensors simultaneously, and save polygons (A Google-map-enabled tool that allows the user to define geographic coordinates).

 

 

Bone-Dating Using Hyperspectral Imaging!

 

Headwall recently completed some fascinating demonstration work on behalf of the Conservation Manager and several colleagues at London's Natural History Museum.

One of the hallmarks of hyperspectral imaging is its ability to non-destructively and non-invasively collect an invaluable amount of spatial and spectral data from any sort of reflected matter within the field of view. In commerce and environmental studies, hyperspectral imaging is a valuable and well-known tool that can ‘see’ the unseen.

composite bonesForensics is another exciting area of research. Take 300,000-year-old Neanderthal human bones, for example. Or a 300-year-old snake skin. Or a 400-year-old book of poems. Here you see two bones within the field of view of Headwall's VNIR starter kit. The smaller one is 'only' 200 years old; the larger is 300,000 years old. But the beauty of hyperspectral sensing is that it can classify and compare specimens like these with a tremendous amount of precision, yielding a level of scientific analysis that museums and 'collection-care' experts crave. The demonstration that Headwall performed was an exciting opportunity to show off not only the capabilities of the sensor, but also the capabilities of our new Hyperspec III software. The Conservation Manager was extremely excited with the results of the demonstration. He even remarked that his museum would like to embrace and move forward with the opportunity to be a 'Centre of Excellence for Hyperspectral Imaging,' with Headwall as its sponsor.

Spectral ‘fingerprints’ contain a tremendous amount of useful data, and hyperspectral instruments can see these fingerprints and then extract meaningful data regarding the chemical composition of anything within the field of view. More helpful still, these instruments work in tandem with known spectral libraries that allow a very high degree of selectivity and discrimination. If you know the spectral fingerprint associated with a particular chemical, you can reference it against the hyperspectral data cube coming from the sensor. That fingerprint, once found, very often will be a ‘predictor’ of something else. Disease conditions in crop trees, for example, or the presence of certain inks or pigments on a document or artifact. That’s why precision agriculture and document verification are two other common deployment areas for hyperspectral imaging.

Headwall Remote Sensing Capabilities Seen “Down Under”

 

melbourneThis past week, Headwall remote sensing team finished a productive week Down Under at the International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia.  The conference, organized by the IEEE, comprises a ‘Who’s Who’ across the global remote sensing community. But curiously absent were representatives from the United States, probably reflecting the topic du jour: sequestration. Imagine holding a geo-spatial and remote sensing conference and no one from NASA was able to attend?

From an international perspective, we observed tremendous interest from customers looking to gain spectral capability for their manned aircraft and also surprising interest from organizations looking to buy “all-inclusive” UAV configurations that include the Micro-Hyperspec imaging spectrometer, a GPS/INS unit, a lightweight IGARSS 2013 Boothembedded processor, and an suite of application software. This complete airborne package was a big hit at IGARSS because while users have good grasp on the benefits of airborne hyperspectral, they need help making it work in particular application.  Two very nice UAVs on display at IGARSS created a lot of buzz in the Headwall booth. Although Headwall doesn’t make the UAV platform, we make them do some pretty amazing things within the realm of hyperspectral remote sensing. That message came through loud and clear, as our stand at IGARSS was phenomenally busy from the start right through the end.

A bit further up in altitude were visitors interested in hyperspectral remote sensing from space. A major point of interest throughout the conference was a demonstrated need for cost effective, space-qualified hyperspectral sensor payloads.  With most of the world’s planned remote sensing missions being delayed for budget reasons, VNIR (380-1000nm) and SWIR (900-2500nm) space-qualified imagers are hot commodities. This is an area that Headwall Great Ocean Roaddeveloped over the last five years with its own space-qualified sensor payloads.  There was also strong focus from attendees on how satellite collaboration could be established among the world’s most notable remote sensing programs.  Japan’s ALOS-3 (2016 launch?), European ENMAP (2017 launch?), and NASA HYSPIRI mission (2023 launch?) represent three of several.

Even with all the activity at IGARSS, Headwall’s remote sensing team led by Kevin Didona, Principal Engineer at Headwall, also took some hyperspectral scans of rock wall formations at some very scenic places along the Great Ocean Road on the South Coast of Australia.

As Headwall has developed extensive experience in the application of hyperspectral sensors specifically designed for UAVs, please drop us a line or give is a call if we can provide some information to meet the objectives of your remote sensing research.

Email us at Information@HeadwallPhotonics.com

Visit us at www.HeadwallPhotonics.com

Or call us at Tel: +1 978 353 4003


Hyperspectral and Remote Sensing the focus at EARSeL!

 

Headwall's exhibition schedule kicks into high gear this month. First up is our appearance at the 8th Imaging Spectrometry Workshop, sponsored by The European Association of Remote Sensing Laboratories (EARSeL). This event gives visitors the opportunity to understand how hyperspectral imaging can be a valuable scientific tool for the research community. Precision agriculture, mining & minerals, petroleum pipeline surveillance, and disaster mitigation are just a few application areas and more are uncovered all the time as the technology becomes more affordable and easier to use.

EARSeL blog photoHeadwall is seeing a meteoric rise in the use of small and light UAVs for remote sensing activities. SkyJib (from Droidworx) and the Mk II by Winehawk Labs are two such examples, and you’ll see both at EARSeL. The more nimble these hand-launched airframes get, the smaller and lighter the sensors themselves need to be. Headwall’s collaborative engineering approach gives customers a fast path to success with lightweight solutions that also include integrated application software and a GPS/INS. The beauty of Headwall’s Micro Hyperspec sensor is that it is purpose-engineered for flight. Besides being rugged, it also provides outstanding spatial and spectral resolution in the NIR (900nm-1700nm) and VNIR (380nm-1000nm) ranges while also having a very wide field of view. A wide field-of-view means a more efficient the flight path. In other words, the UAVs can cover more territory by collecting precise spectral detail not only directly below but also off to the sides.

While small, hand-launched UAVs are perfect for a wide range of scientific exploration activities, fixed-wing aircraft ranging from the Cessna to the Twin Otter are also used as a platform for hyperspectral sensors. Headwall’s High-Efficiency Hyperspec sensor covers the NIR (900nm - 1700nm) and SWIR   (950nm - 2500nm) spectral ranges. Aberration-corrected and completely athermalized, it provides the highest optical performance and diffraction efficiency of greater than 90%. We’ll be showing this at EARSeL also.

Later in April…beginning on the 3oth actually…Headwall will be at the Defense, Security + Sensing show in Baltimore. We’ll be in Booth 1830 at the Baltimore Convention Center for DSS, which is quickly becoming the go-to show for all things related to surveillance and reconnaissance. While the interest here is largely airborne, visitors also want to know about ground-based and hand-held hyperspectral sensors. Headwall’s flagship hand-held sensor is Hyperspec RECON, which won the R&D100 Award in 2012. This portable instrument covers the VNIR (380nm-1000 nm) spectral range and can render a 6-inch sq. hyperspectral scene at a distance of over a kilometer. Best of all, it’s easy to use and can be ‘tuned’ by loading spectral libraries via an integrated SD slot. Hyperspec RECON represents a very flexible reconnaissance platform that can also be used in a stationary manner (mounted to a mast or a vehicle, for example).

While Hyperspec RECON and its handheld ingenuity is a groundbreaking achievement, many applications need instruments that can either point-and-stare’ or ‘pan-and-tilt.’ Headwall has sensors for both types of deployment that exhibit the very same aberration-corrected concentric imaging performance as their airborne counterparts. Since hyperspectral imaging depends on movement to occur, the instruments are motorized and fully engineered for the tasks they are challenged with.

Headwall will be at several exhibitions and conferences throughout 2013 aside from the two described here. These events will serve as excellent venues as we come out with new products and enhanced versions of existing ones.

 


 

Resource Exploration Using Hyperspectral Imaging

 

Headwall utilizes hyperspectral sensing technology as an essential industrial inspection platform and has made this technology increasingly valuable across a wider spectrum of commercial applications and most notably in the oil & gas industry.  Companies in the petro-chemical industry focus much of their financial capital and effort on efficient pipeline distribution, refinery operations, and environmental monitoring.  Not only for exploration, but also to keep to keep their refining and distribution infrastructure safe.

hyperspectral analysisSo how can hyperspectral sensors help?  The lessons and knowledge gained from the remote sensing applications are directly applicable to the challenges faced by oil & gas companies as very remote and harsh territories are managed for energy production.  The data-rich imagery produced by a airborne and ground-based hyperspectral sensor can provide answers to some of the most pressing questions:

  • Are pipelines being properly monitored for structural integrity and vegetation encroachment?
  • Are pipelines leaking products such as methane?
  • Is there environmental damage that cannot readily be observed?
  • Does a particular area hold exploration value?

In practically every case, these questions are posed with respect to some of the most remote and desolate territory around. The upper reaches of Canada, Siberia, and within the Arctic Circle to name just three.  It’s practically impossible to simply drive over this rugged ice and permafrost terrain, which is why companies in the petro-chemical industry invest so heavily in airborne assets such as fixed-wing aircraft and UAVs as well as invest in satellite-based remote sensing data.

PipelineHyperspectral sensors measure the intensity of solar energy reflected from materials over hundreds of wavelengths from the visible-near infrared (VNIR) to the long wave infrared (LWIR) spectral region. They can record visible light (comprised of relatively short wavelengths such as blue, green, and red) as well as longer, near-infrared, and short wave-infrared light. Reflected light is collected into picture elements (pixels) by flying the imaging sensor over terrain. The reflected visible and infrared light is subdivided into 100 to 200+ discrete wavelength bands within each pixel.

Headwall has developed a leading position in the manufacture and deployment of small, lightweight hyperspectral sensors that are specifically designed for the small, low flying UAVs being deployed. Not only are the sensors small but they generate high resolution spectral and spatial imagery.  The patented, aberration-corrected design of the Micro-Hyperspec sensor allows UAVs to make fewer passes over a certain geographical area while eliminating image aberrations.

Crude oil can be ‘seen’ by hyperspectral sensors operating in the visible/near-infrared spectral bands. A phenomenon known as ‘micro-leakage’ yields hydrocarbon components in the surface soil and water, which the sensors can detect. There is a correlation between ‘micro-leakage’ and the probability of an oil or gas reservoir; detecting the presence of hydrocarbon is a technical means of making that correlation. Doing so from a UAV means a much more efficient collection of useful data as the sensor can be designed to ‘discriminate’ and ‘see’ precisely what geologists are hoping to see based on the spectral signatures of interest.

Disaster mitigationOther useful deployments of hyperspectral include looking at the state of vegetation stress near oil and gas pipelines. With legislation such as California’s “cap & trade” regulations being implemented, managing pipeline content and distribution network integrity carries financial implications for the producers.  With this requirement, the detection of methane from pipeline leaks becomes critical.  With pipelines several thousand miles long, airborne analysis is the only real way to collect actionable data rapidly and with some frequency.

Finally, oil and gas exploration companies are using hyperspectral sensors as a means of environmentally monitoring.  This is very important as environmental changes are often much noticeable utilizing hyperspectral sensor technology to identify spectral anomalies.

In the situation of a spill, hyperspectral sensing can be invaluable in monitoring and prioritizing clean-up efforts. Over the course of time, the sensors can report on trends…both positively and negatively. Again, the ability of hyperspectral sensors to discriminate means more meaningful, actionable data delivered from a cost-effective sensor platform such as Headwall’s Hyperspec imaging sensors.

Mineral mappingWhile the petroleum industry sees value in airborne hyperspectral sensing, so do companies in the minerals/mining industry. Because the cost to explore is prohibitive, innovation at the ‘front end’ means better exploration efficiency. The ability to distill large geographical areas into smaller land packages using airborne hyperspectral sensing means that the more costly assessments can be done where airborne sensing suggests a high probability of success exists.

During the exploration process, hyperspectral sensing can identify the presence of certain minerals such as iron ore and can also ‘grade’ them with a high degree of precision. A weathered environment can also hide the presence of valuable mineral deposits from normal explorative techniques, while hyperspectral sensing can unmask them. This mineral map for the Yeelirrie district of Australia demonstrates the ability of hyperspectral imaging to identify mineral assemblages in the presence of intense weathering. This particular map is indicative of calcrete-hosted Uranium.

 

 

Remote Sensing: All Eyes on Munich

 

The IEEE is an esteemed organization with top-notch events held worldwide. These events draw experts from across industry, government and education.

One of these events is happening next week, in Munich, Germany. The IEEE's International Geoscience and Remote Sensing Symposium (IGARSS) will probably see its biggest attendance ever, as the evolution of unmanned aerial vehicles (UAVs) melds with needs of the remote sensing community. Headwall Photonics will be in booth #18.

IGARSS 2012Much of what scientists want to analyze is best done from above. This holds true for oceanography, atmospheric research, precision agriculture, minerals and mining, and forestry management. Now that commercial UAVs are becoming more affordable and regulations governing their use more ‘mainstream,’ the door is wide open for a fascinating amount of quality research helped along by these small, pilotless aircraft.

Hyperspectral sensors represent a highly desired piece of precision instrumentation carried aloft by UAVs. Why? Because they can extract a tremendous amount of data based on the spectral makeup of what is within the field of view. What the human eye—or even infrared—cannot see, hyperspectral sensors can. Small, lightweight, and extremely precise, Headwall’s Micro Hyperspec is favored for its ability to offer several attractive capabilities. First is its tall slit, which gives the sensor a wide field of view. The wider the field of view, the more precise the hyperspectral data is from a given altitude. Looking down Hyperspectral imaging from UAVsfrom above, UAVs can make fewer passes over a plot of land if the resolution to either side of the flight path is very wide. In short, more territory can be covered in less time.

Another highly desired characteristic is spatial and spectral resolution, which determines how faithful the hyperspectral data is. The beauty of a hyperspectral sensor is that it can delineate what it ‘sees’ with a tremendous degree of resolution. For example, higher resolution can mean the difference between simply distinguishing disease conditions and determining what those diseases are. Or, determining good soil conditions from bad.

While affordable UAVs are all the rage at present, the beauty of hyperspectral imaging is that instruments can be made small and rugged to fit specific payload requirements. 'Size, Weight & Power' (referred to as 'SWaP) describes the continuous desire to make payloads as small, lightweight, and as power-efficient as possible. These characteristics hold true for any airborne vehicle aside from a UAV, whether a fixed-wing aircraft, a high-altitude reconnaissance plane, or a satellite. Headwall Photonics has hyperspectral instruments deployed successfully in all these platforms.

 

 


All Posts