Headwall Photonics Blog

Headwall Successfully Re-Certifies to ISO 9001

Posted by Christopher Van Veen on Tue, Feb 17, 2015

Manufacturing companies of any size must demonstrate to their customers that they are quality-driven organizations. This holds for products, processes, and procedures. The global economy demands this. Since its inception, Headwall recognized that ISO certification would be a core competitive differentiator. The Company set out to be judged against the rigorous ISO9001 standard and was rewarded with certification in 2008. Indeed, Headwall was one of the smallest manufacturing companies to be so certified.

Headwall ISO certificateEvery three years Headwall must undergo a recertification audit, and each time we have successfully demonstrated our adherence to the ISO standard. Our latest such audit with nqa-usa came this month, and we are very pleased and proud to say that we continue to be an ISO9001 organization. On the global stage, and with customers among the largest and best known, Headwall is recognized for having a level of thoroughness and discipline across the key areas of its business. This success translates into how our products are designed, how they are built, how corrective actions are identified and handled, how communications both internal and external are managed, and how procedures and processes are documented and then followed.

Achieving successful ISO9001 recertification is a proud moment for Headwall every three years, and we wanted to make mention of it here.
Tags: Headwall Photonics, ISO9001

Nano-Hyperspec...in the air and on the ground

Posted by Christopher Van Veen on Fri, Feb 06, 2015

Next week during Photonics West we’ll be demonstrating our very newest hyperspectral sensor: Nano-Hyperspec. We gave it that name because it’s small...exceptionally small. Think of a Rubik's Cube and you've got it. The market said it needed a robust, aberration-corrected hyperspectral sensor purpose-built for small, hand-launched UAVs. One perfect example is the X6 from the Aibotix division of Leica-Geosystems, a company with whom Headwall signed an agreement in late 2014. “There’s a confluence within the remote sensing marketplace,” said Headwall CEO David Bannon. “The attractiveness of affordable, easy to launch UAVs runs headlong into the need for perfectly matched sensor instruments that they can carry.” In conceiving Nano-Hyperspec, Headwall consolidated and integrated as much as possible to yield a small, performance-packed unit that even the smallest UAVs could easily carry.

“Ordinarily, a hyperspectral sensor talks to a separate computer in order to transfer large amounts of image data quickly,” noted Bannon. “But small UAVs don’t have the payload capacity to carry a separate data-processing unit and the cables they require.” So the first order of business was to put the data processing and storage technology into the sensor itself, which frees up space for other accessories. For proper image-data collection from a UAV, the hyperspectral sensor needs to work along with a GPS. Nano-Hyperspec was designed so that the GPS can attach directly to the housing, further saving weight and space. “Integrating these normally disparate pieces into an integrated whole is what the market continually tells us it needs,” noted Bannon. “All of this not only makes for a lightweight sensor package, but also allows for the addition of technology such as LiDAR, which itself is collecting valuable data for scientists to use.”

Nano Leica logoNano-Hyperspec focuses on the Visible and Near-Infrared spectral range (often referred to as ‘VNIR’) of 400-1000nm. “Much of what needs to be seen from a UAV is taken at slow speeds and low altitudes,” said Bannon. This can be precision agriculture, environmental monitoring, minerals and geology, or any of a number of other uses. But to a large degree, what becomes visible to a hyperspectral sensor between 400 and 1000nm can include the presence of disease conditions on a tree canopy where it otherwise might be invisible from below. “Entire economies depend on agriculture,” said Bannon. “If a low-flying UAV with our specially-tuned hyperspectral sensor can ‘see’ an invasive disease, our technology becomes vital rather than simply desired.”

One of the hallmarks of all Headwall sensor designs is aberration-correction. In simple terms, this means making sure that the sensor sees as crisply and clearly off to the edges of its field of view is as it does straight beneath the line of flight. The holographic diffraction grating embedded within each sensor is designed to make this so, by eliminating unwanted artifacts such as ‘keystone’ and ‘smile’ that are more pronounced off to the edges of the field of view. “In practical terms, it means that the sensor has a very wide field of view that is accurately represented,” said Bannon. A wider view means a more efficient flight path. In short, the UAV can cover more ground because it can accurately ‘see’ more ground. This is particularly crucial because UAVs are battery-powered; the objective is to maximize useful work in the limited time aloft. A wide view of the ground at exceptionally high spatial and spectral resolution allows this to be so.

holographic gratingsIt has been said that people buy holes, not drills. They basically have a problem that needs an answer. How they get their hole or derive their answer is an exercise in technology, economics, and speed. “We have a technical solution that is affordably priced,” said Bannon. The partnership with Leica-Geosystems helps. “Time-to-deploy is an exercise in economics and lost opportunity because real value can be derived the sooner the UAV/hyperspectral package is airborne and collecting useful data.”

Not lost on the remote-sensing community is this: many applications involve taking image data from the ground rather than from a UAV. Nano-Hyperspec is easily attached to a tripod and a rotational stage so that the necessary movement (which ordinarily would come from a UAV) instead happens from a ‘stationary’ platform. These deployments are sometimes called ‘point-and-stare’ or ‘pan-and-tilt,’ and it represents a means of accomplishing movement-based hyperspectral imaging on the ground.

Headwall's booth at Photonics West (Moscone Convention Center, San Francisco) is 2506. Hope to see you there!

Tags: hyperspectral imaging, Headwall Photonics, Remote Sensing, UAS, UAV, Leica-Geosystems

U.S. Congresswoman Niki Tsongas Visits Headwall

Posted by Christopher Van Veen on Wed, Oct 29, 2014

Niki Tsongas, Congresswoman from the 3rd Congressional District in Massachusetts, visited Headwall today to meet with Company officials and speak to employees. Ms. Tsongas applauded Headwall’s focus on technical leadership across its core markets. “I’m fascinated by all the exciting applications for your products,” Tsongas noted. “My work in Congress is aimed at strengthening the entrepreneurial spirit I see when I visit companies like Headwall.”

Niki TsongasDuring the visit, Congresswoman Tsongas toured Headwall’s Fitchburg facility and saw firsthand how the Company’s vertically-integrated approach moves spectral imaging sensors from design to production very rapidly. The sensors, used by industry and government, collect a complete ‘spectral picture’ of whatever is within the field of view. This can be from a satellite, a manned aircraft, a small UAV, or along a high-speed inspection line where product quality can be determined by hyperspectral imaging.

During the ‘town hall’ meeting with employees, Tsongas fielded questions from employees on a range of topics, including her position on STEM education (science, technology, engineering, and mathematics). “Education in these areas represents the catalyst for companies like Headwall to flourish,” noted Tsongas. “You need people who can hit the ground running, and education is fundamental to achieving a labor force that is ready to go in very challenging areas across science and technology.”

Headwall CEO David Bannon thanked Congresswoman Tsongas for visiting Headwall. “We’re very honored to have you here today because it reinforces Washington’s support for small, entrepreneurial, technology-driven companies like ours.”

Congresswoman Tsongas was elected to the United State House of Representatives in a 2007 special election, becoming the first woman in 25 years to serve in Congress from the Commonwealth of Massachusetts. She represents the Massachusetts Third District, which had previously been known as the Fifth District until her most recent reelection in 2012. Tsongas holds the same seat that was held three decades earlier by her late husband, former Congressman, U.S. Senator and presidential candidate Paul Tsongas. The Third District spans portions of Essex, Middlesex and Worcester counties.

Tsongas serves on the House Armed Services Committee, a position she sought out when first elected. In 2013, Tsongas’ hard work led to her being named to a leadership position as the top Democrat on the Subcommittee for Oversight and Investigations. The Third District has a long history of military service, which is reflected both in the number of residents who serve in the active duty military as well as in the numerous veterans who call the Third District home.  Tsongas also represents one of the largest concentrations of defense related employers in the country that manufacture the products, develop the technology and create the jobs that keep our nation strong and our service members safe.

As a member of the Armed Services Committee, Tsongas has pushed for development of lightweight body armor and new measures to better prevent and respond to incidents of sexual assault in the military.

Tsongas also serves on the Natural Resources Committee, which oversees legislation related to domestic energy production, National Parks, rivers, forests, oceans and wilderness areas.

More can be learned about Congresswoman Tsongas at her official web site.

 

Tags: Headwall Photonics, Fitchburg, Niki Tsongas, U.S. Congress, 3rd Congressional District, Massachusetts

Headwall Names Tom Breen as Director of Global Sales

Posted by Christopher Van Veen on Fri, Jun 06, 2014

Growth Markets Require Solid Industry Background Across Commercial and Defense Markets 

Fitchburg, MA – June 6, 2014 – With a rapid expansion of international business, Headwall Photonics announced today that Tom Breen has joined the Company as Director of Global Sales. Tom brings with him significant experience across many of the end-user markets served by Headwall. He will be responsible for managing Headwall’s growing worldwide sales activities and strategic opportunities for hyperspectral and Raman imagers as well as the Company’s OEM integrated spectral instrumentation.

Tom BreenPrior to joining Headwall, Tom held executive leadership positions at UTC Aerospace Systems where he was responsible for sales and business development of airborne and hand-held products. He also served as Vice President of Sales and Marketing for General Dynamic’s Axsys Technology Division in Nashua, New Hampshire. Other senior management positions at L-3 Communications, BAE Systems, and Lockheed Martin provided Tom with the background that will allow Headwall to grow its business in the hyperspectral imaging market.

“We are thrilled that Tom has joined our team,” said Headwall CEO David Bannon. “His background complements our commercial growth plans seamlessly and he will be a terrific asset in tackling a market that is experiencing very robust growth. Tom has had significant success in building high performance sales teams coupled with exceptional customer relationships.”

“I am very excited to be joining Headwall at a period of tremendous momentum for the Company and the industry,” said Tom. “As a leading supplier of spectral instrumentation, Headwall is uniquely poised to expand and deliver hyperspectral sensors and OEM instruments for remote sensing and in-line applications.”

Headwall’s award-winning Hyperspec and Raman imagers are used in commercial and military airborne applications, in advanced machine-vision systems, for document and artifact care, for plant genomics, in medicine and biotechnology, and for remote sensing. A unique differentiator for the Company is Headwall’s patented all-reflective, aberration-corrected optical technology that is fundamental to every system it produces.

Tom is a published author, with numerous works produced for IEEE, SPIE, and AAAE. Tom’s educational background includes MBA and BSEE degrees from Northeastern University in Boston.

Tags: hyperspectral, Headwall Photonics, Headwall, Tom Breen, Sales

Headwall's Field-of-View Calculator

Posted by Christopher Van Veen on Mon, Mar 17, 2014

When it comes to hyperspectral imaging, it isn’t always about the hardware. Before users even get to the stage of specifying a sensor instrument, they need to ask a few questions:

  • What do I want to look at?
  • How am I deploying the sensor?
  • What is the spectral range of what I’m looking at?
  • How far from the object will I be?

The answers to these questions will lead to an informed decision about the kind of sensor that’s best, the kind of lens it will need, and how small and light the sensor needs to be.  At Headwall, we’re helping customers sort through these questions and considerations every day. We make on-line tools available that make instrument specification easy. With the answers to a few simple questions, the overall application-specific design of a hyperspectral instrument is well within reach. This means quicker time-to-deploy for customers who have challenging scientific questions that need answers.

One of Headwall’s newest tools is the Field-of-View (FOV) calculator. This tool collects a few important user-defined parameters to arrive at several what-if scenarios. The first parameter is distance from lens to object. In an airborne application, the distance would likely be measured in meters. For lab-based or in-line deployment, it might only be centimeters.  The second parameter is the wavelength, which can be UV-VIS (380-825nm) all the way up to SWIR (950-2500 nm). Knowing the spectral signature of the item of interest will point you in the correct direction.

FOV resized 600

The calculator will take this information and combine it with choice of sensor and lens to arrive at useful data for the customer. In this case, we see that for the parameters and options chosen we are given the number of spatial and spectral channels (1004 and 335 respectively). We’re also given the linear and angular FOV, the instantaneous FOV, and the spectral resolution. In an airborne application, the linear FOV can be thought of as the flight swath. The wider the better, because the aircraft or UAV will be able to collect full hyperspectral information with fewer passes over the ground.

Output

Spectral libraries are common starting points for defining where to look along the spectral range. The spectral signature for everything from plants and crops to minerals and petroleum is known or catalogued.  While everything has its own signature, the real strength of hyperspectral imaging is to discriminate and classify. So while the sensor can actually ‘see’ everything, it is tuned to look for things that may resonate at 900 nm or 1900 nm for example. A disease condition on a fruit tree may be impossible to detect by any visible means, but it will resonate quite clearly when seen with a hyperspectral sensor.

Customers come to Headwall regularly with certain ‘needs.’ A crop scientist may want to analyze the soil from an airborne UAV. Another may want to adopt hyperspectral imaging along a high-speed food processing line to see and remove foreign matter. A third may be a museum preservationist interested in understanding the artwork and artifacts under their care. But in all cases, the first question is: What do you want to see?

 

Tags: hyperspectral imaging, Headwall Photonics, Airborne, Sensors

Headwall Remote Sensing Capabilities Seen “Down Under”

Posted by David Bannon on Wed, Jul 31, 2013

melbourneThis past week, Headwall remote sensing team finished a productive week Down Under at the International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia.  The conference, organized by the IEEE, comprises a ‘Who’s Who’ across the global remote sensing community. But curiously absent were representatives from the United States, probably reflecting the topic du jour: sequestration. Imagine holding a geo-spatial and remote sensing conference and no one from NASA was able to attend?

From an international perspective, we observed tremendous interest from customers looking to gain spectral capability for their manned aircraft and also surprising interest from organizations looking to buy “all-inclusive” UAV configurations that include the Micro-Hyperspec imaging spectrometer, a GPS/INS unit, a lightweight IGARSS 2013 Boothembedded processor, and an suite of application software. This complete airborne package was a big hit at IGARSS because while users have good grasp on the benefits of airborne hyperspectral, they need help making it work in particular application.  Two very nice UAVs on display at IGARSS created a lot of buzz in the Headwall booth. Although Headwall doesn’t make the UAV platform, we make them do some pretty amazing things within the realm of hyperspectral remote sensing. That message came through loud and clear, as our stand at IGARSS was phenomenally busy from the start right through the end.

A bit further up in altitude were visitors interested in hyperspectral remote sensing from space. A major point of interest throughout the conference was a demonstrated need for cost effective, space-qualified hyperspectral sensor payloads.  With most of the world’s planned remote sensing missions being delayed for budget reasons, VNIR (380-1000nm) and SWIR (900-2500nm) space-qualified imagers are hot commodities. This is an area that Headwall Great Ocean Roaddeveloped over the last five years with its own space-qualified sensor payloads.  There was also strong focus from attendees on how satellite collaboration could be established among the world’s most notable remote sensing programs.  Japan’s ALOS-3 (2016 launch?), European ENMAP (2017 launch?), and NASA HYSPIRI mission (2023 launch?) represent three of several.

Even with all the activity at IGARSS, Headwall’s remote sensing team led by Kevin Didona, Principal Engineer at Headwall, also took some hyperspectral scans of rock wall formations at some very scenic places along the Great Ocean Road on the South Coast of Australia.

As Headwall has developed extensive experience in the application of hyperspectral sensors specifically designed for UAVs, please drop us a line or give is a call if we can provide some information to meet the objectives of your remote sensing research.

Email us at [email protected]

Visit us at www.HeadwallPhotonics.com

Or call us at Tel: +1 978 353 4003


Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, Remote Sensing, Sensors, Micro Hyperspec, UAS, SWIR, Sensing, VNIR, Satellites, UAV

Hyperspectral and Remote Sensing the focus at EARSeL!

Posted by Christopher Van Veen on Wed, Apr 03, 2013

Headwall's exhibition schedule kicks into high gear this month. First up is our appearance at the 8th Imaging Spectrometry Workshop, sponsored by The European Association of Remote Sensing Laboratories (EARSeL). This event gives visitors the opportunity to understand how hyperspectral imaging can be a valuable scientific tool for the research community. Precision agriculture, mining & minerals, petroleum pipeline surveillance, and disaster mitigation are just a few application areas and more are uncovered all the time as the technology becomes more affordable and easier to use.

EARSeL blog photoHeadwall is seeing a meteoric rise in the use of small and light UAVs for remote sensing activities. SkyJib (from Droidworx) and the Mk II by Winehawk Labs are two such examples, and you’ll see both at EARSeL. The more nimble these hand-launched airframes get, the smaller and lighter the sensors themselves need to be. Headwall’s collaborative engineering approach gives customers a fast path to success with lightweight solutions that also include integrated application software and a GPS/INS. The beauty of Headwall’s Micro Hyperspec sensor is that it is purpose-engineered for flight. Besides being rugged, it also provides outstanding spatial and spectral resolution in the NIR (900nm-1700nm) and VNIR (380nm-1000nm) ranges while also having a very wide field of view. A wide field-of-view means a more efficient the flight path. In other words, the UAVs can cover more territory by collecting precise spectral detail not only directly below but also off to the sides.

While small, hand-launched UAVs are perfect for a wide range of scientific exploration activities, fixed-wing aircraft ranging from the Cessna to the Twin Otter are also used as a platform for hyperspectral sensors. Headwall’s High-Efficiency Hyperspec sensor covers the NIR (900nm - 1700nm) and SWIR   (950nm - 2500nm) spectral ranges. Aberration-corrected and completely athermalized, it provides the highest optical performance and diffraction efficiency of greater than 90%. We’ll be showing this at EARSeL also.

Later in April…beginning on the 3oth actually…Headwall will be at the Defense, Security + Sensing show in Baltimore. We’ll be in Booth 1830 at the Baltimore Convention Center for DSS, which is quickly becoming the go-to show for all things related to surveillance and reconnaissance. While the interest here is largely airborne, visitors also want to know about ground-based and hand-held hyperspectral sensors. Headwall’s flagship hand-held sensor is Hyperspec RECON, which won the R&D100 Award in 2012. This portable instrument covers the VNIR (380nm-1000 nm) spectral range and can render a 6-inch sq. hyperspectral scene at a distance of over a kilometer. Best of all, it’s easy to use and can be ‘tuned’ by loading spectral libraries via an integrated SD slot. Hyperspec RECON represents a very flexible reconnaissance platform that can also be used in a stationary manner (mounted to a mast or a vehicle, for example).

While Hyperspec RECON and its handheld ingenuity is a groundbreaking achievement, many applications need instruments that can either point-and-stare’ or ‘pan-and-tilt.’ Headwall has sensors for both types of deployment that exhibit the very same aberration-corrected concentric imaging performance as their airborne counterparts. Since hyperspectral imaging depends on movement to occur, the instruments are motorized and fully engineered for the tasks they are challenged with.

Headwall will be at several exhibitions and conferences throughout 2013 aside from the two described here. These events will serve as excellent venues as we come out with new products and enhanced versions of existing ones.

 


 

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, DSS, Remote Sensing, Sensors, Micro Hyperspec, Sensing, UAV, ALAVA Ingenieros

Remote Sensing: All Eyes on Munich

Posted by Christopher Van Veen on Fri, Jul 20, 2012

The IEEE is an esteemed organization with top-notch events held worldwide. These events draw experts from across industry, government and education.

One of these events is happening next week, in Munich, Germany. The IEEE's International Geoscience and Remote Sensing Symposium (IGARSS) will probably see its biggest attendance ever, as the evolution of unmanned aerial vehicles (UAVs) melds with needs of the remote sensing community. Headwall Photonics will be in booth #18.

IGARSS 2012Much of what scientists want to analyze is best done from above. This holds true for oceanography, atmospheric research, precision agriculture, minerals and mining, and forestry management. Now that commercial UAVs are becoming more affordable and regulations governing their use more ‘mainstream,’ the door is wide open for a fascinating amount of quality research helped along by these small, pilotless aircraft.

Hyperspectral sensors represent a highly desired piece of precision instrumentation carried aloft by UAVs. Why? Because they can extract a tremendous amount of data based on the spectral makeup of what is within the field of view. What the human eye—or even infrared—cannot see, hyperspectral sensors can. Small, lightweight, and extremely precise, Headwall’s Micro Hyperspec is favored for its ability to offer several attractive capabilities. First is its tall slit, which gives the sensor a wide field of view. The wider the field of view, the more precise the hyperspectral data is from a given altitude. Looking down Hyperspectral imaging from UAVsfrom above, UAVs can make fewer passes over a plot of land if the resolution to either side of the flight path is very wide. In short, more territory can be covered in less time.

Another highly desired characteristic is spatial and spectral resolution, which determines how faithful the hyperspectral data is. The beauty of a hyperspectral sensor is that it can delineate what it ‘sees’ with a tremendous degree of resolution. For example, higher resolution can mean the difference between simply distinguishing disease conditions and determining what those diseases are. Or, determining good soil conditions from bad.

While affordable UAVs are all the rage at present, the beauty of hyperspectral imaging is that instruments can be made small and rugged to fit specific payload requirements. 'Size, Weight & Power' (referred to as 'SWaP) describes the continuous desire to make payloads as small, lightweight, and as power-efficient as possible. These characteristics hold true for any airborne vehicle aside from a UAV, whether a fixed-wing aircraft, a high-altitude reconnaissance plane, or a satellite. Headwall Photonics has hyperspectral instruments deployed successfully in all these platforms.

 

 


Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, Remote Sensing, Sensors, Sensing, Satellites, UAV, agriculture

Headwall Photonics: In Good Company

Posted by Christopher Van Veen on Wed, Jun 20, 2012

They say, "You're judged by the company you keep..." And with that, we're very proud to have been chosen as a 2012 R&D Award recipient from R&D Magazine. We nominated our Hyperspec RECON hyperspectral sensor because it pulls together cutting-edge spectral imaging technologies and embodies the very essence of innovation that the award competition was RECON RD 100 talldesigned to foster. An independent judging panel and the editors of R&D Magazine obviously agreed, and now Hyperspec RECON proudly sits as one of the world's most technologically significant products developed over the past year.

So, what exactly is Hyperspec RECON and why do we believe it attracted the attention of the judges? The product is a very sensitive, precise hyperspectral sensor that operates in the VNIR (380nm - 1000 nm) spectral range. We developed Hyperspec RECON initially for the U.S. Army so that they would have a brand-new forward reconnaissance asset to deploy on the battlefield. Packaged small, light and robust, Hyperspec RECON will allow a soldier to render a 6-inch by 6-inch hyperspectral scene at a distance of over a mile. Every material has its own spectral signature, and Hyperspec RECON is able to discern what it 'sees' with a high degree of precision, sensitivity, and selectivity. Operator controls are minimal, and spectral libraries are loaded onto a removable SD card.

The foundational technology that made Hyperspec RECON a winning product is shared across all of Headwall's hyperspectral sensors. Application areas include remote sensing, airborne surveillance, high-speed inspection lines, forensics, medical and biotechnology, and precision agriculture. Across them all, Headwall instruments provide very high spatial and spectral resolution and high-efficiency diffractive optics.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Defense, Sensors, Security, diffraction gratings

Hyperspectral Imaging Helps Improve Food Inspection

Posted by Christopher Van Veen on Tue, Jun 12, 2012

Photonics Spectra June 2012We're quite proud to note that the current issue of Photonics Spectra features a new cover story authored by Chris Van Veen and David Bannon of Headwall Photonics. One of the focal points of the story is that hyperspectral imaging isn't solely for satellites and high-flying aircraft...although we're quite well-versed when it comes to those application areas!

Headwall has worked tirelessly to refine and adapt hyperspectral imaging technology so that it can be deployed along food inspection lines to boost speed and quality...and do so economically. Indeed, the USDA said earlier this year that it wants to modify poultry inspection so that companies take more ownership of the process. To do so, they need exceptionally reliable and robust spectral imaging solutions that integrate seamlessly into existing facility layouts. In this article we talk about a variety of application areas for hyperspectral, all revolving around food. We also talk about important considerations that need to be addressed so that the technology demonstrably exceeds the level of precision, accuracy, speed, and return on investment that food-processing companies demand.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, food processing