Headwall Photonics Blog

Resource Exploration Using Hyperspectral Imaging

Posted by Christopher Van Veen on Wed, Dec 19, 2012

Headwall utilizes hyperspectral sensing technology as an essential industrial inspection platform and has made this technology increasingly valuable across a wider spectrum of commercial applications and most notably in the oil & gas industry.  Companies in the petro-chemical industry focus much of their financial capital and effort on efficient pipeline distribution, refinery operations, and environmental monitoring.  Not only for exploration, but also to keep to keep their refining and distribution infrastructure safe.

hyperspectral analysisSo how can hyperspectral sensors help?  The lessons and knowledge gained from the remote sensing applications are directly applicable to the challenges faced by oil & gas companies as very remote and harsh territories are managed for energy production.  The data-rich imagery produced by a airborne and ground-based hyperspectral sensor can provide answers to some of the most pressing questions:

  • Are pipelines being properly monitored for structural integrity and vegetation encroachment?
  • Are pipelines leaking products such as methane?
  • Is there environmental damage that cannot readily be observed?
  • Does a particular area hold exploration value?

In practically every case, these questions are posed with respect to some of the most remote and desolate territory around. The upper reaches of Canada, Siberia, and within the Arctic Circle to name just three.  It’s practically impossible to simply drive over this rugged ice and permafrost terrain, which is why companies in the petro-chemical industry invest so heavily in airborne assets such as fixed-wing aircraft and UAVs as well as invest in satellite-based remote sensing data.

PipelineHyperspectral sensors measure the intensity of solar energy reflected from materials over hundreds of wavelengths from the visible-near infrared (VNIR) to the long wave infrared (LWIR) spectral region. They can record visible light (comprised of relatively short wavelengths such as blue, green, and red) as well as longer, near-infrared, and short wave-infrared light. Reflected light is collected into picture elements (pixels) by flying the imaging sensor over terrain. The reflected visible and infrared light is subdivided into 100 to 200+ discrete wavelength bands within each pixel.

Headwall has developed a leading position in the manufacture and deployment of small, lightweight hyperspectral sensors that are specifically designed for the small, low flying UAVs being deployed. Not only are the sensors small but they generate high resolution spectral and spatial imagery.  The patented, aberration-corrected design of the Micro-Hyperspec sensor allows UAVs to make fewer passes over a certain geographical area while eliminating image aberrations.

Crude oil can be ‘seen’ by hyperspectral sensors operating in the visible/near-infrared spectral bands. A phenomenon known as ‘micro-leakage’ yields hydrocarbon components in the surface soil and water, which the sensors can detect. There is a correlation between ‘micro-leakage’ and the probability of an oil or gas reservoir; detecting the presence of hydrocarbon is a technical means of making that correlation. Doing so from a UAV means a much more efficient collection of useful data as the sensor can be designed to ‘discriminate’ and ‘see’ precisely what geologists are hoping to see based on the spectral signatures of interest.

Disaster mitigationOther useful deployments of hyperspectral include looking at the state of vegetation stress near oil and gas pipelines. With legislation such as California’s “cap & trade” regulations being implemented, managing pipeline content and distribution network integrity carries financial implications for the producers.  With this requirement, the detection of methane from pipeline leaks becomes critical.  With pipelines several thousand miles long, airborne analysis is the only real way to collect actionable data rapidly and with some frequency.

Finally, oil and gas exploration companies are using hyperspectral sensors as a means of environmentally monitoring.  This is very important as environmental changes are often much noticeable utilizing hyperspectral sensor technology to identify spectral anomalies.

In the situation of a spill, hyperspectral sensing can be invaluable in monitoring and prioritizing clean-up efforts. Over the course of time, the sensors can report on trends…both positively and negatively. Again, the ability of hyperspectral sensors to discriminate means more meaningful, actionable data delivered from a cost-effective sensor platform such as Headwall’s Hyperspec imaging sensors.

Mineral mappingWhile the petroleum industry sees value in airborne hyperspectral sensing, so do companies in the minerals/mining industry. Because the cost to explore is prohibitive, innovation at the ‘front end’ means better exploration efficiency. The ability to distill large geographical areas into smaller land packages using airborne hyperspectral sensing means that the more costly assessments can be done where airborne sensing suggests a high probability of success exists.

During the exploration process, hyperspectral sensing can identify the presence of certain minerals such as iron ore and can also ‘grade’ them with a high degree of precision. A weathered environment can also hide the presence of valuable mineral deposits from normal explorative techniques, while hyperspectral sensing can unmask them. This mineral map for the Yeelirrie district of Australia demonstrates the ability of hyperspectral imaging to identify mineral assemblages in the presence of intense weathering. This particular map is indicative of calcrete-hosted Uranium.

 

 

Tags: hyperspectral imaging, hyperspectral, Airborne, Remote Sensing, Sensors, Sensing

Remote Sensing: All Eyes on Munich

Posted by Christopher Van Veen on Fri, Jul 20, 2012

The IEEE is an esteemed organization with top-notch events held worldwide. These events draw experts from across industry, government and education.

One of these events is happening next week, in Munich, Germany. The IEEE's International Geoscience and Remote Sensing Symposium (IGARSS) will probably see its biggest attendance ever, as the evolution of unmanned aerial vehicles (UAVs) melds with needs of the remote sensing community. Headwall Photonics will be in booth #18.

IGARSS 2012Much of what scientists want to analyze is best done from above. This holds true for oceanography, atmospheric research, precision agriculture, minerals and mining, and forestry management. Now that commercial UAVs are becoming more affordable and regulations governing their use more ‘mainstream,’ the door is wide open for a fascinating amount of quality research helped along by these small, pilotless aircraft.

Hyperspectral sensors represent a highly desired piece of precision instrumentation carried aloft by UAVs. Why? Because they can extract a tremendous amount of data based on the spectral makeup of what is within the field of view. What the human eye—or even infrared—cannot see, hyperspectral sensors can. Small, lightweight, and extremely precise, Headwall’s Micro Hyperspec is favored for its ability to offer several attractive capabilities. First is its tall slit, which gives the sensor a wide field of view. The wider the field of view, the more precise the hyperspectral data is from a given altitude. Looking down Hyperspectral imaging from UAVsfrom above, UAVs can make fewer passes over a plot of land if the resolution to either side of the flight path is very wide. In short, more territory can be covered in less time.

Another highly desired characteristic is spatial and spectral resolution, which determines how faithful the hyperspectral data is. The beauty of a hyperspectral sensor is that it can delineate what it ‘sees’ with a tremendous degree of resolution. For example, higher resolution can mean the difference between simply distinguishing disease conditions and determining what those diseases are. Or, determining good soil conditions from bad.

While affordable UAVs are all the rage at present, the beauty of hyperspectral imaging is that instruments can be made small and rugged to fit specific payload requirements. 'Size, Weight & Power' (referred to as 'SWaP) describes the continuous desire to make payloads as small, lightweight, and as power-efficient as possible. These characteristics hold true for any airborne vehicle aside from a UAV, whether a fixed-wing aircraft, a high-altitude reconnaissance plane, or a satellite. Headwall Photonics has hyperspectral instruments deployed successfully in all these platforms.

 

 


Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, Remote Sensing, Sensors, Sensing, Satellites, UAV, agriculture

Hyperspectral Imaging - Next Generation Machine Vision Platform for Food Safety and Quality

Posted by David Bannon on Tue, Jun 26, 2012

Bosoon Park, author of this blog entry, works as an Agricultural Engineer on behalf of the USDA in Georgia. He has done extensive research on hyperspectral and Raman imaging as it applies to food inspection and agriculture. Author of numerous published papers on the subject, Bosoon will be co-presenting a discussion on hyperspectral imaging at the annual conference of the American Society of Agricultural and Biological Engineers to be held in Dallas July 30 through August 2.

USDA At USDA, our work revolves around making sure that the foods we harvest and eat are safe, high quality, and healthy. Our mission is twofold: ensuring and improving the safety of food and feed, and ensuring and improving the quality and economic value of food and crops.

There are very important inspection steps between ‘farm’ and ‘fork,and the USDA invests considerable time looking at new technologies that can help. Hyperspectral & Raman imaging (both imaging spectroscopy techniques) can provide valuable inspection data based on the chemical composition of agricultural products that traditional machine vision systems cannot provide. 

During the past decade, USDA has worked with companies such as Headwall Photonics to develop hyperspectral technologies for in-line food safety inspection. Our work focuses on contaminant detection during in-line processing, which the Hyperspec Inspector allows us to do. Our researchers are expanding hyperspectral imaging technology to rapidly detect foodborne pathogens at a microscopic level.  Hyperspectral imaging has tremendous potential for the food industry in terms of safety inspection and quality control by analyzing spatial and spectral characteristics of agricultural products.  We are also exploring handheld hyperspectral instruments fully integrated with operating software for field use.

Raman spectrometers will also detect foodborne pathogens since their scattering phenomena respond very well to particular laser-lighting sources. USDA researchers have proved the concept to identify bacterial species and foodborne bacterial serotypes with surface-enhanced Raman scattering (SERS). This is an emerging area of focused research for improved food safety.

In an effort to educate and inform, several of us from USDA are preparing a short course on ‘hyperspectral imaging’ at the upcoming American Society of Agricultural and Biological Engineers (ASABE) conference July 30-August 2 in Dallas. Thanks to help from Headwall Photonics in commercializing and economizing the technology, we’re able to research and test hyperspectral and Raman instruments so that they can become mainstream across food-processing industries ranging from poultry to specialty crops.

Tags: hyperspectral imaging, hyperspectral, Sensors, SWIR, food processing, agriculture, Raman, USDA, plant phenotyping, Raman imaging

Headwall Photonics: In Good Company

Posted by Christopher Van Veen on Wed, Jun 20, 2012

They say, "You're judged by the company you keep..." And with that, we're very proud to have been chosen as a 2012 R&D Award recipient from R&D Magazine. We nominated our Hyperspec RECON hyperspectral sensor because it pulls together cutting-edge spectral imaging technologies and embodies the very essence of innovation that the award competition was RECON RD 100 talldesigned to foster. An independent judging panel and the editors of R&D Magazine obviously agreed, and now Hyperspec RECON proudly sits as one of the world's most technologically significant products developed over the past year.

So, what exactly is Hyperspec RECON and why do we believe it attracted the attention of the judges? The product is a very sensitive, precise hyperspectral sensor that operates in the VNIR (380nm - 1000 nm) spectral range. We developed Hyperspec RECON initially for the U.S. Army so that they would have a brand-new forward reconnaissance asset to deploy on the battlefield. Packaged small, light and robust, Hyperspec RECON will allow a soldier to render a 6-inch by 6-inch hyperspectral scene at a distance of over a mile. Every material has its own spectral signature, and Hyperspec RECON is able to discern what it 'sees' with a high degree of precision, sensitivity, and selectivity. Operator controls are minimal, and spectral libraries are loaded onto a removable SD card.

The foundational technology that made Hyperspec RECON a winning product is shared across all of Headwall's hyperspectral sensors. Application areas include remote sensing, airborne surveillance, high-speed inspection lines, forensics, medical and biotechnology, and precision agriculture. Across them all, Headwall instruments provide very high spatial and spectral resolution and high-efficiency diffractive optics.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Defense, Sensors, Security, diffraction gratings

Hyperspectral Imaging Helps Improve Food Inspection

Posted by Christopher Van Veen on Tue, Jun 12, 2012

Photonics Spectra June 2012We're quite proud to note that the current issue of Photonics Spectra features a new cover story authored by Chris Van Veen and David Bannon of Headwall Photonics. One of the focal points of the story is that hyperspectral imaging isn't solely for satellites and high-flying aircraft...although we're quite well-versed when it comes to those application areas!

Headwall has worked tirelessly to refine and adapt hyperspectral imaging technology so that it can be deployed along food inspection lines to boost speed and quality...and do so economically. Indeed, the USDA said earlier this year that it wants to modify poultry inspection so that companies take more ownership of the process. To do so, they need exceptionally reliable and robust spectral imaging solutions that integrate seamlessly into existing facility layouts. In this article we talk about a variety of application areas for hyperspectral, all revolving around food. We also talk about important considerations that need to be addressed so that the technology demonstrably exceeds the level of precision, accuracy, speed, and return on investment that food-processing companies demand.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, food processing

The 'High Science' of Hyperspectral Imaging Goes Mainstream

Posted by Jeff Paquette on Wed, Jun 06, 2012

Hyperspectral instruments often conjure up images of ‘high science,’ where complex instruments are tended to by white-jacketed specialists. While the instruments themselves are very precise and highly engineered, Headwall Photonics is taking complexity out while putting exceptional performance in.

Application areas for hyperspectral imaging are numerous: forensics, biotechnology, high-speed inspection, color measurement, pharmaceuticals, and airborne remote sensing are just some of them. And of course, NASA-led military, reconnaissance, and remote-sensing missions became the catalyst for this technology in the first place.

Poultry ProcessingThanks to efforts led by Headwall to drive cost and complexity out while improving optical resolution, Hyperspectral imaging technology is now emerging as a very useful process/analytical tool in the automation of food safety and quality inspection.

Because hyperspectral imaging sensors provide performance beyond traditional machine-vision cameras, the USDA is taking notice. The USDA seeks to modernize poultry inspection in the United States, and hyperspectral imaging is one area of particular interest to them. The technology can be deployed to detect diseases, physical contaminants or fecal matter. High-speed poultry-processing facilities represent one valuable application area, but hyperspectral imaging can be deployed for any high-value valuable food product.

Since these ‘red-flag’ conditions can be catalogued with respect to their spectral ‘signatures,’ a hyperspectral sensor can do its job quickly and silently by comparing what it sees against this spectral library.  The ripeness level of a cranberry, for example, can be tagged with its spectral signature so that only good product passes through the line.

Processing and inspection speeds go up, product quality is higher than ever, and existing inspection regulations are easily met.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, food processing

Satellite Hyperspectral Sensing Boosts Environmental Research

Posted by David Bannon on Wed, May 16, 2012

Last week, I participated in the bi-annual Earth Observation Business Network 2012 (EOBN) conference, a small group of industry leaders brought together in Vancouver, British Columbia and sponsored by MDA of Canada.  A tip of the hat to John Hornsby, MDA VP of GeoSpatial Strategies and his team, who hosted a very informative and interactive conference.

This year’s EOBN theme was "Operational Decision Making From Earth Observation." The conference featured application sessions from both government and industry leaders who addressed the tactical impact and requirements of satellite and airborne imagery. From aviation to land surveillance/intelligence to the Arctic and Antarctic, leading end-users and providers offered their unique perspective of capabilities and requirements for remote sensing and earth sciences.

It is clear that remote sensing capability is not only a critical and strategic capability for nations, but also for commercial satellite providers developing advanced data products and imaging services. The challenges of working within such harsh environments as the Arctic Circle – whether maritime transport or mineral exploration – require data products that are fused with satellite and spectral imagery.

Arctic Exploration

 

 

 

 

 

 

Photo Source: CBC

With our current ability to provide hyperspectral sensor payloads for small satellites covering the VNIR (380 -1000 nm) and SWIR (950 – 1000 nm), it is clear that Headwall will continue to play an expanding role in the development of remote sensing capabilities throughout the world.

Tags: hyperspectral imaging, Headwall Photonics, Airborne, Remote Sensing, SWIR, VNIR, Satellites

Hyperspectral Imaging & Agriculture: A Perfect Match

Posted by Christopher Van Veen on Wed, May 02, 2012

Spectral imaging and agriculture seems to be a perfect match. Technologies and techniques such as hyperspectral in-line inspection and Raman imaging instrumentation are well suited to very high-speed processing environments such as those found in agricultural processing plants for meat, poultry, and specialty crops.

USDAHeadwall recently had the opportunity to meet with USDA Deputy Secretary Kathleen Merrigan at the Washington DC offices of the USDA.  As stated by Dr. Merrigan, a very high priority for the USDA are issues pertaining to improved food safety and quality all within an environment of challenging fiscal alternatives.  Given the introduction of the Food Safety Modernization Act and USDA-led initiatives such as the HAACP-Based Inspection Pilot (also known as HIMP), there is an ever-growing industry requirement for high-speed machine vision instruments that are capable of supporting food safety and food quality standards accurately and cost-effectively.

Hyperspec InspectorHeadwall has a unique research and development relationship with the USDA whereby Headwall develops hyperspectral instrumentation specifically for in-line inspection in agriculture applications.  These represent very harsh environments, and having a stable spectral imaging platform that addresses multiple spectral ranges is very important for critical processing and inspection applications.  One of these is Hyperspec Inspector (shown), which is a complete hyperspectral imaging solution meant precisely for this kind of industrial environment. Strong collaboration and joint research with the USDA has strongly positioned Headwall’s technology as a proven and cost-effective alternative for food processors.

Click me
Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Sensors, agriculture

Headwall's Hyperpectral Sensors Soar at DSS

Posted by Christopher Van Veen on Thu, Apr 26, 2012

The Defense, Security + Sensing (DSS) show moved from its traditional Orlando venue to Baltimore this year. Flush with technology-driven agencies, the Baltimore-Washington area is a natural magnet for a show such as DSS.

DSS 2012 BaltimoreThe first two days at DSS have been amazing for Headwall, with visitors drawn by the sight of the Insitu 'ScanEagle' UAV. This impressive aircraft is one example of a typical platform that can easily deploy Headwall's 'Micro Hyperspec' hyperspectral sensor. Size, weight, and power-consumption specifications (SWaP) for any payload need to be carefully balanced when it comes to deployment on any mission-critical UAV. So far during the three-day DSS show, the ability to demonstrate our lightweight sensor aboard ScanEagle is proving the point better than any photograph could!

Closer to the ground, Hyperspec RECON is drawing tremendous interest from technologists who need a portable, simple-to-use hyperspectral sensor that can be deployed on the battlefield. Hyperspec RECON can render a 6" x 6" hyperspectral scene at a distance of 1.5 km and process that image data in only a few seconds. Using a spectral library of known signatures, RECON is able to immediately identify them within the field of view. Aberration-corrected imaging technology combined with robust, fast data-processing software give our troops immediate, accurate, and actionable hyperspectral data in the field of battle.

DSS wraps up later today at the Baltimore Convention Center.

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, DSS, Defense

Hyperspectral Imaging Heads to Baltimore for DSS!

Posted by Christopher Van Veen on Fri, Apr 20, 2012

DSSDSS--Defense, Security + Sensing--is the world's largest unclassified event for defense, security, and sensing applications for industry and the environment, and we'll be there in Booth 2220 starting Tuesday April 24.

DSS relocated from Orlando to Baltimore for 2012. The move from Orlando is a good one because it will bring in more experts than ever in the fields of homeland security, defense, and environmental sensing. Here, they'll gain visibility for their work and products and receive face-to-face feedback from their peers.

Hyperspec RECON

DSS is a premiere event on the Headwall Photonics show schedule. New this year will be a product called Hyperspec RECON, which is a portable yet rugged hyperspectral sensor that can render a 6" x 6" target at distances of up to 1.5km. We'll have the RECON system on display and operational, so be sure to take a look!

One of the most critical applications for hyperspectral technology in the field of defense, security and sensing is aboard airborne platforms such as the ScanEagle from Insitu. We'll have an actual ScanEagle in our booth, courtesy ofScanEagle by Insitu Insitu, to demonstrate how our lightweight Micro Hyperspec sensors can be deployed in packages where size, weight, and power (SWaP) need to be optimized.

We look forward to seeing you at DSS starting April 24!

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, DSS, Defense, Micro Hyperspec, Sensing, Security, Insitu