Headwall Photonics Blog

Hyperspectral Takes Wing Over Ontario!

Posted by Christopher Van Veen on Thu, May 01, 2014

UASUnder cloudless skies in Ontario recently, Headwall achieved a very notable milestone: we became the first to fly both hyperspectral and LiDAR aboard a small, fully integrated handheld UAS. The test flights not only verified the reliable airworthiness of the system but also the ability to collect valuable hyperspectral and LiDAR data in real time.

Integration is key, because all of this specialized data-collecting instrumentation needs to fit the payload parameters with respect to size and weight. With UAS systems shrinking in size and weight, payloads need to follow suit. As prime contractor for this complete airborne system, Headwall is able to get end-users up and running quicker than ever. Time to deployment is reduced by months thanks to the work Headwall is doing to engineer optimized solutions that meet specific remote-sensing needs.

“The variety of applications for this type of integrated airborne system are numerous,” said Headwall CEO David Bannon. “Precision agriculture is a key one we’re seeing on a global scale, but geology, pipeline inspection, environmental research, pollution analysis are others.” Today’s UAS is smaller, lighter, and more affordable than ever, which makes it a perfect platform from which to carry precise imaging instruments such as hyperspectral and LiDAR. “We’ve always been a pioneer in the area of small hyperspectral sensors for just these kind of deployments,” noted Bannon. “Our strength comes from understanding what our users want to do and then engineering a complete airborne solution that meets that need.”

Chris Van Veen, marketing manager at Headwall, was on site to record and document the test flights. “A fully integrated package like this represents a new frontier for remote-sensing scientists who now have an airborne research platform that goes wherever they do,” says Chris. “Watching this fly and collect data in Canada was a thrill because it was visible testimony to all our integration work.”

The entire payload aboard this particular UAS is less than ten pounds, which includes hyperspectral, GPS/IMU, LiDAR, and computing hardware. Besides making sure these elements are small and light enough, the challenge of integrating everything with an eye toward battery lifetime is also Headwall’s to manage. “We know our remote-sensing users have very important work to do, and they need sufficient power not only to fly but also to operate the instruments,” said Bannon. One way to meet this challenge head-on is to make sure the hyperspectral sensor provides a very wide field of view with precise imagery from one edge to the other. “If you can assure outstanding image-collection across a wide field of view, and then provide orthorectification of that data, you’re covering more ground for each flight swath.”

Fundamental to accomplishing this is Headwall’s approach to optics, which is both simple and elegant. “Our diffractive optics approach uses no moving parts, which, in an airborne application, means robustness and reliability,” said Bannon. Inside each Micro-Hyperspec sensor is a precise and small holographic diffraction grating that manages incoming light with exceptional fidelity. These sensors are ‘tuned’ for the spectral range of interest to the user. “Depending on what the user wants to ‘see,’ he may need a VNIR sensor that operates from 380-1000 nanometers,” said Bannon. The spectral signature of a certain disease condition on a crop tree will determine the spectral range of the sensor, for example. Headwall has also introduced a wideband VNIR-SWIR sensor package that covers from 400-2500 nanometers. This co-registered hyperspectral instrument will be very popular with users who need broad coverage but need a small, light, and affordable instrument to do it with.

The following video will give you a peek into how flight testing went in Ontario.

Tags: hyperspectral, Airborne, Remote Sensing, UAS, UAV, agriculture

UAVs and Hyperspectral Imaging Unite

Posted by Christopher Van Veen on Tue, Mar 25, 2014

One of the things we’re seeing at Headwall is the proliferation of airborne applications. Multispectral suffers a bit with respect to hyperspectral (a handful of bands versus hundreds), which is why hyperspectral is winning the day.

UAV choicesOne reason is instrument affordability. Multi-million-dollar hyperspectral sensor programs might have flown (literally and figuratively) in the military world, but not in precision agriculture or with universities. Budgets are smaller, and that money has to be spread among not only the sensor but the UAV and everything in between. This is where small, entrepreneurial companies like Headwall shine, because everything in between can mean LiDAR, GPS/IMU technology, application software, data processing, and so much more. We understand hyperspectral imaging better than anyone, and our focus has always been to better that technology while driving costs lower. This is the essence of commercial-off-the-shelf (COTS), where highly specialized military instrumentation finds a home all across industry and academia. With respect to Headwall, COTS implementation means smaller, lighter and more affordable sensors that are easier to use yet just as optically precise as their multimillion-dollar military counterparts.

Second, you cannot go a day without seeing stories about UAVs. Fixed-wing designs like those from AGX and PrecisionHawk are crowding the skies along with multi-rotor helicopters like Infinite JIB and AIBOTIX. These are much more than hobbyist playthings and are perfect for scientific reasearch duties. They have excellent range and payload-carrying characteristics, and they are stable aloft.  From mineral exploration and agriculture to petroleum and pollution control, UAVs are everywhere it seems. And everyone takes notice when household names like Facebook, Google and Amazon decide that the UAV is going to be instrumental to their future success. Much of this might sound fanciful and far-off, but it is happening now. Court challenges are being won, and while care needs to be taken on how regulations are drafted and enforced, no one doubts that the UAV is not only here to stay but will become commonplace.

Obviously, UAVs simply take up airspace unless they are doing good work. And largely, we seem to hear about bad things happening when mention of UAVs (and drones) is made. But stop and consider for a moment how a famine-stricken area can be made crop-fertile thanks to hyperspectral data that a UAV-mounted sensor can collect. A scientist will know about disease conditions with enough time to prevent damage by skimming the treetops and looking for anomalies that become ‘visible’ through hyperspectral imaging. A farmer will know where to plant and harvest…and where not to. Crop stress will be seen long before it becomes a worry, and the amount of wholesome and nourishing food planted in areas once thought impossible will blossom. In short, small and light UAVs are affordable for the people who need to use them. They can be flown in areas that vehicles and humans cannot yet reach, providing a window of research never available to scientists before.

As we see the proliferation of UAVs capable of carrying sensor payloads, it is important to understand how everything goes together. Here, Headwall is taking a leading role. Many mistakenly believe that slapping a sensor onto an octo-copter is all they need to do. But making sure everything works the way it should aboard a flying, unmanned vehicle is another challenge altogether. How much ground do you need to cover, and do you have enough battery power to do it? How much hyperspectral data do you need to collect, and do you have the computing and storage horsepower to make that happen? What are you looking for, and what spectral ranges are those things in? How do you ortho-rectify the data during post-processing? And how do you use the science of ground-truth as it relates to airborne hyperspectral imaging? This last consideration is hugely important, because the collaboration of airborne hyperspectral and ground-truth delivers the best possible accumulation of data. Headwall and ASD have even authored a 12-page whitepaper on the relationship between airborne hyperspectral data and ground-truth techniques.

Tags: hyperspectral imaging, Airborne, Remote Sensing, UAV, precision agriculture

Hyperspectral Sensors for UAV Applications

Posted by Christopher Van Veen on Wed, Feb 19, 2014

The scientific research community is beginning to understand and embrace hyperspectral imaging as a useful tool for a few primary reasons. First, sensors are more affordable than ever. Originally conceived as multi-million-dollar ISR platforms for defense applications, hyperspectral imagers have been successfully ‘commercialized’ over the past few years. Scientists typically embracing RGB or multispectral technology before can now acquire hyperspectral sensors at affordable price points.

Hyperspectral sensors of the ‘pushbroom’ type produced by Headwall require motion to occur. That is, either the sensor flies above the field of view, or the field of view moves beneath the sensor. For UAV applications, Headwall’s small and lightweight Micro-Hyperspec is the platform of choice. Available in the VNIR (380-1000nm), NIR (900-1700nm), and SWIR (950-2500nm) spectral ranges, the sensor is truly ‘SWaP-friendly.’

Spectral range is often where the decision-making starts. The chemical fingerprint—or spectral signature—of anything within the field of view will lead the user in one direction or another. For example, a certain disease condition on a tree canopy may become ‘visible’ within the SWIR spectral range (950-2500nm). Similarly, a certain mineral deposit may become ‘visible’ in the VNIR range (380-1000nm). One approach to ensuring the spectral ‘fidelity’ of images collected by the sensor makes use of ‘diffractive optics’ comprising aberration-corrected holographic gratings. This ‘Aberration-corrected concentric’ design is shown below.

concentric imager

There are several advantages to this ‘reflective’ approach. First, the design is simple, temperature insensitive, and uses no moving parts. This assures robustness and reliability in airborne situations. Second, diffraction gratings can be made very small so that the instruments themselves can be small and light; in other words, capable of fitting the new class of lightweight, hand-launched UAVs. Third, the design optimizes technical characteristics that are most important: low distortion for high spatial and spectral resolution; high throughput for high signal-to-noise; and a tall slit for a wide field-of-view. Because the design is an all-reflective one, chromatic dispersion is eliminated and excellent focus is assured across the entire spectral range.

Many within the environmental research community and across ‘precision agriculture’ prefer to use UAVs as their primary airborne platform. They are more affordable than fixed-wing aircraft and easy to launch. But as UAVs get smaller and lighter, so must the payloads they carry. And integrating the sensor into the airframe along with other necessities such as LiDAR, power management/data collection hardware, and cabling can be a daunting task (Figure 3). Orthorectification of the collected data is another key requirement, which is the means by which the hyperspectral data cube is ‘managed’ into useful information that has been ‘corrected’ for any airborne anomalies. In other words, the collected hyperspectral data needs to be ‘true’ to what’s actually within the field of view.

 Micro Hyperspec

Acquiring a UAV and a hyperspectral sensor won’t assure compatible performance, and a high level of ‘integration work’ is needed. The UAV community and the hyperspectral sensor community are both challenged with pulling everything together. Recognizing this, Headwall Photonics is taking an industry-leading position as a supplier of fully integrated airborne solutions comprising the UAV, the sensor, the power and data management solution, cabling, and application software. The result is that users are flying sooner and collecting better hyperspectral data than ever before.

Type of UAV is very often one of the first decisions a scientist will need to make. Fixed-wing and multi-rotor are the two general categories, with numerous styles and designs within each. In-flight stability and flight-time duration are both paramount concerns, and this is where payload restrictions will often point toward one or the other. Multi-rotor UAVs launch and land vertically, so this type will be favored in situations where space is tight. Conversely, a fixed-wing UAV requires suitable space to launch and land but can provide longer flight duration and carry a heavier payload. The wide field-of-view characteristic of the concentric imager allows a UAV to ‘see’ more ground along its flight path.

Integrated airborne package

Two other key areas managed through Headwall’s integrative process are data management and application software. While a separate subsystem is used to control the sensor operation and store the hyperspectral data, the direction is clearly toward on-board integration of these capabilities. Flash storage and solid-state drives will soon make it possible for the sensor to ‘contain’ all the related functionality that now needs to be contained in a separate module. This will clearly lighten the overall payload, reduce battery consumption, and boost airborne flight time.

Headwall’s Hyperspec III software represents a complete, modularized approach to the management of hyperspectral data. Orthorectification is one such module within the software suite that removes the unwanted effects airborne behavior. The resultant orthorectified images have a constant scale wherein features are represented in their 'true' positions. This allows for the accurate direct measurement of distances, angles, and areas. Other aspects of the software suite can be used to control GPS/IMU devices, control multiple sensors simultaneously, and save polygons (A Google-map-enabled tool that allows the user to define geographic coordinates).

 

 

Tags: hyperspectral imaging, hyperspectral, Airborne, Remote Sensing, Micro Hyperspec, agriculture, diffraction gratings, precision agriculture

Headwall Remote Sensing Capabilities Seen “Down Under”

Posted by David Bannon on Wed, Jul 31, 2013

melbourneThis past week, Headwall remote sensing team finished a productive week Down Under at the International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia.  The conference, organized by the IEEE, comprises a ‘Who’s Who’ across the global remote sensing community. But curiously absent were representatives from the United States, probably reflecting the topic du jour: sequestration. Imagine holding a geo-spatial and remote sensing conference and no one from NASA was able to attend?

From an international perspective, we observed tremendous interest from customers looking to gain spectral capability for their manned aircraft and also surprising interest from organizations looking to buy “all-inclusive” UAV configurations that include the Micro-Hyperspec imaging spectrometer, a GPS/INS unit, a lightweight IGARSS 2013 Boothembedded processor, and an suite of application software. This complete airborne package was a big hit at IGARSS because while users have good grasp on the benefits of airborne hyperspectral, they need help making it work in particular application.  Two very nice UAVs on display at IGARSS created a lot of buzz in the Headwall booth. Although Headwall doesn’t make the UAV platform, we make them do some pretty amazing things within the realm of hyperspectral remote sensing. That message came through loud and clear, as our stand at IGARSS was phenomenally busy from the start right through the end.

A bit further up in altitude were visitors interested in hyperspectral remote sensing from space. A major point of interest throughout the conference was a demonstrated need for cost effective, space-qualified hyperspectral sensor payloads.  With most of the world’s planned remote sensing missions being delayed for budget reasons, VNIR (380-1000nm) and SWIR (900-2500nm) space-qualified imagers are hot commodities. This is an area that Headwall Great Ocean Roaddeveloped over the last five years with its own space-qualified sensor payloads.  There was also strong focus from attendees on how satellite collaboration could be established among the world’s most notable remote sensing programs.  Japan’s ALOS-3 (2016 launch?), European ENMAP (2017 launch?), and NASA HYSPIRI mission (2023 launch?) represent three of several.

Even with all the activity at IGARSS, Headwall’s remote sensing team led by Kevin Didona, Principal Engineer at Headwall, also took some hyperspectral scans of rock wall formations at some very scenic places along the Great Ocean Road on the South Coast of Australia.

As Headwall has developed extensive experience in the application of hyperspectral sensors specifically designed for UAVs, please drop us a line or give is a call if we can provide some information to meet the objectives of your remote sensing research.

Email us at [email protected]

Visit us at www.HeadwallPhotonics.com

Or call us at Tel: +1 978 353 4003


Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, Remote Sensing, Sensors, Micro Hyperspec, UAS, SWIR, Sensing, VNIR, Satellites, UAV

Hyperspectral and Remote Sensing the focus at EARSeL!

Posted by Christopher Van Veen on Wed, Apr 03, 2013

Headwall's exhibition schedule kicks into high gear this month. First up is our appearance at the 8th Imaging Spectrometry Workshop, sponsored by The European Association of Remote Sensing Laboratories (EARSeL). This event gives visitors the opportunity to understand how hyperspectral imaging can be a valuable scientific tool for the research community. Precision agriculture, mining & minerals, petroleum pipeline surveillance, and disaster mitigation are just a few application areas and more are uncovered all the time as the technology becomes more affordable and easier to use.

EARSeL blog photoHeadwall is seeing a meteoric rise in the use of small and light UAVs for remote sensing activities. SkyJib (from Droidworx) and the Mk II by Winehawk Labs are two such examples, and you’ll see both at EARSeL. The more nimble these hand-launched airframes get, the smaller and lighter the sensors themselves need to be. Headwall’s collaborative engineering approach gives customers a fast path to success with lightweight solutions that also include integrated application software and a GPS/INS. The beauty of Headwall’s Micro Hyperspec sensor is that it is purpose-engineered for flight. Besides being rugged, it also provides outstanding spatial and spectral resolution in the NIR (900nm-1700nm) and VNIR (380nm-1000nm) ranges while also having a very wide field of view. A wide field-of-view means a more efficient the flight path. In other words, the UAVs can cover more territory by collecting precise spectral detail not only directly below but also off to the sides.

While small, hand-launched UAVs are perfect for a wide range of scientific exploration activities, fixed-wing aircraft ranging from the Cessna to the Twin Otter are also used as a platform for hyperspectral sensors. Headwall’s High-Efficiency Hyperspec sensor covers the NIR (900nm - 1700nm) and SWIR   (950nm - 2500nm) spectral ranges. Aberration-corrected and completely athermalized, it provides the highest optical performance and diffraction efficiency of greater than 90%. We’ll be showing this at EARSeL also.

Later in April…beginning on the 3oth actually…Headwall will be at the Defense, Security + Sensing show in Baltimore. We’ll be in Booth 1830 at the Baltimore Convention Center for DSS, which is quickly becoming the go-to show for all things related to surveillance and reconnaissance. While the interest here is largely airborne, visitors also want to know about ground-based and hand-held hyperspectral sensors. Headwall’s flagship hand-held sensor is Hyperspec RECON, which won the R&D100 Award in 2012. This portable instrument covers the VNIR (380nm-1000 nm) spectral range and can render a 6-inch sq. hyperspectral scene at a distance of over a kilometer. Best of all, it’s easy to use and can be ‘tuned’ by loading spectral libraries via an integrated SD slot. Hyperspec RECON represents a very flexible reconnaissance platform that can also be used in a stationary manner (mounted to a mast or a vehicle, for example).

While Hyperspec RECON and its handheld ingenuity is a groundbreaking achievement, many applications need instruments that can either point-and-stare’ or ‘pan-and-tilt.’ Headwall has sensors for both types of deployment that exhibit the very same aberration-corrected concentric imaging performance as their airborne counterparts. Since hyperspectral imaging depends on movement to occur, the instruments are motorized and fully engineered for the tasks they are challenged with.

Headwall will be at several exhibitions and conferences throughout 2013 aside from the two described here. These events will serve as excellent venues as we come out with new products and enhanced versions of existing ones.

 


 

Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, DSS, Remote Sensing, Sensors, Micro Hyperspec, Sensing, UAV, ALAVA Ingenieros

Resource Exploration Using Hyperspectral Imaging

Posted by Christopher Van Veen on Wed, Dec 19, 2012

Headwall utilizes hyperspectral sensing technology as an essential industrial inspection platform and has made this technology increasingly valuable across a wider spectrum of commercial applications and most notably in the oil & gas industry.  Companies in the petro-chemical industry focus much of their financial capital and effort on efficient pipeline distribution, refinery operations, and environmental monitoring.  Not only for exploration, but also to keep to keep their refining and distribution infrastructure safe.

hyperspectral analysisSo how can hyperspectral sensors help?  The lessons and knowledge gained from the remote sensing applications are directly applicable to the challenges faced by oil & gas companies as very remote and harsh territories are managed for energy production.  The data-rich imagery produced by a airborne and ground-based hyperspectral sensor can provide answers to some of the most pressing questions:

  • Are pipelines being properly monitored for structural integrity and vegetation encroachment?
  • Are pipelines leaking products such as methane?
  • Is there environmental damage that cannot readily be observed?
  • Does a particular area hold exploration value?

In practically every case, these questions are posed with respect to some of the most remote and desolate territory around. The upper reaches of Canada, Siberia, and within the Arctic Circle to name just three.  It’s practically impossible to simply drive over this rugged ice and permafrost terrain, which is why companies in the petro-chemical industry invest so heavily in airborne assets such as fixed-wing aircraft and UAVs as well as invest in satellite-based remote sensing data.

PipelineHyperspectral sensors measure the intensity of solar energy reflected from materials over hundreds of wavelengths from the visible-near infrared (VNIR) to the long wave infrared (LWIR) spectral region. They can record visible light (comprised of relatively short wavelengths such as blue, green, and red) as well as longer, near-infrared, and short wave-infrared light. Reflected light is collected into picture elements (pixels) by flying the imaging sensor over terrain. The reflected visible and infrared light is subdivided into 100 to 200+ discrete wavelength bands within each pixel.

Headwall has developed a leading position in the manufacture and deployment of small, lightweight hyperspectral sensors that are specifically designed for the small, low flying UAVs being deployed. Not only are the sensors small but they generate high resolution spectral and spatial imagery.  The patented, aberration-corrected design of the Micro-Hyperspec sensor allows UAVs to make fewer passes over a certain geographical area while eliminating image aberrations.

Crude oil can be ‘seen’ by hyperspectral sensors operating in the visible/near-infrared spectral bands. A phenomenon known as ‘micro-leakage’ yields hydrocarbon components in the surface soil and water, which the sensors can detect. There is a correlation between ‘micro-leakage’ and the probability of an oil or gas reservoir; detecting the presence of hydrocarbon is a technical means of making that correlation. Doing so from a UAV means a much more efficient collection of useful data as the sensor can be designed to ‘discriminate’ and ‘see’ precisely what geologists are hoping to see based on the spectral signatures of interest.

Disaster mitigationOther useful deployments of hyperspectral include looking at the state of vegetation stress near oil and gas pipelines. With legislation such as California’s “cap & trade” regulations being implemented, managing pipeline content and distribution network integrity carries financial implications for the producers.  With this requirement, the detection of methane from pipeline leaks becomes critical.  With pipelines several thousand miles long, airborne analysis is the only real way to collect actionable data rapidly and with some frequency.

Finally, oil and gas exploration companies are using hyperspectral sensors as a means of environmentally monitoring.  This is very important as environmental changes are often much noticeable utilizing hyperspectral sensor technology to identify spectral anomalies.

In the situation of a spill, hyperspectral sensing can be invaluable in monitoring and prioritizing clean-up efforts. Over the course of time, the sensors can report on trends…both positively and negatively. Again, the ability of hyperspectral sensors to discriminate means more meaningful, actionable data delivered from a cost-effective sensor platform such as Headwall’s Hyperspec imaging sensors.

Mineral mappingWhile the petroleum industry sees value in airborne hyperspectral sensing, so do companies in the minerals/mining industry. Because the cost to explore is prohibitive, innovation at the ‘front end’ means better exploration efficiency. The ability to distill large geographical areas into smaller land packages using airborne hyperspectral sensing means that the more costly assessments can be done where airborne sensing suggests a high probability of success exists.

During the exploration process, hyperspectral sensing can identify the presence of certain minerals such as iron ore and can also ‘grade’ them with a high degree of precision. A weathered environment can also hide the presence of valuable mineral deposits from normal explorative techniques, while hyperspectral sensing can unmask them. This mineral map for the Yeelirrie district of Australia demonstrates the ability of hyperspectral imaging to identify mineral assemblages in the presence of intense weathering. This particular map is indicative of calcrete-hosted Uranium.

 

 

Tags: hyperspectral imaging, hyperspectral, Airborne, Remote Sensing, Sensors, Sensing

Remote Sensing: All Eyes on Munich

Posted by Christopher Van Veen on Fri, Jul 20, 2012

The IEEE is an esteemed organization with top-notch events held worldwide. These events draw experts from across industry, government and education.

One of these events is happening next week, in Munich, Germany. The IEEE's International Geoscience and Remote Sensing Symposium (IGARSS) will probably see its biggest attendance ever, as the evolution of unmanned aerial vehicles (UAVs) melds with needs of the remote sensing community. Headwall Photonics will be in booth #18.

IGARSS 2012Much of what scientists want to analyze is best done from above. This holds true for oceanography, atmospheric research, precision agriculture, minerals and mining, and forestry management. Now that commercial UAVs are becoming more affordable and regulations governing their use more ‘mainstream,’ the door is wide open for a fascinating amount of quality research helped along by these small, pilotless aircraft.

Hyperspectral sensors represent a highly desired piece of precision instrumentation carried aloft by UAVs. Why? Because they can extract a tremendous amount of data based on the spectral makeup of what is within the field of view. What the human eye—or even infrared—cannot see, hyperspectral sensors can. Small, lightweight, and extremely precise, Headwall’s Micro Hyperspec is favored for its ability to offer several attractive capabilities. First is its tall slit, which gives the sensor a wide field of view. The wider the field of view, the more precise the hyperspectral data is from a given altitude. Looking down Hyperspectral imaging from UAVsfrom above, UAVs can make fewer passes over a plot of land if the resolution to either side of the flight path is very wide. In short, more territory can be covered in less time.

Another highly desired characteristic is spatial and spectral resolution, which determines how faithful the hyperspectral data is. The beauty of a hyperspectral sensor is that it can delineate what it ‘sees’ with a tremendous degree of resolution. For example, higher resolution can mean the difference between simply distinguishing disease conditions and determining what those diseases are. Or, determining good soil conditions from bad.

While affordable UAVs are all the rage at present, the beauty of hyperspectral imaging is that instruments can be made small and rugged to fit specific payload requirements. 'Size, Weight & Power' (referred to as 'SWaP) describes the continuous desire to make payloads as small, lightweight, and as power-efficient as possible. These characteristics hold true for any airborne vehicle aside from a UAV, whether a fixed-wing aircraft, a high-altitude reconnaissance plane, or a satellite. Headwall Photonics has hyperspectral instruments deployed successfully in all these platforms.

 

 


Tags: hyperspectral imaging, hyperspectral, Headwall Photonics, Airborne, Remote Sensing, Sensors, Sensing, Satellites, UAV, agriculture

Satellite Hyperspectral Sensing Boosts Environmental Research

Posted by David Bannon on Wed, May 16, 2012

Last week, I participated in the bi-annual Earth Observation Business Network 2012 (EOBN) conference, a small group of industry leaders brought together in Vancouver, British Columbia and sponsored by MDA of Canada.  A tip of the hat to John Hornsby, MDA VP of GeoSpatial Strategies and his team, who hosted a very informative and interactive conference.

This year’s EOBN theme was "Operational Decision Making From Earth Observation." The conference featured application sessions from both government and industry leaders who addressed the tactical impact and requirements of satellite and airborne imagery. From aviation to land surveillance/intelligence to the Arctic and Antarctic, leading end-users and providers offered their unique perspective of capabilities and requirements for remote sensing and earth sciences.

It is clear that remote sensing capability is not only a critical and strategic capability for nations, but also for commercial satellite providers developing advanced data products and imaging services. The challenges of working within such harsh environments as the Arctic Circle – whether maritime transport or mineral exploration – require data products that are fused with satellite and spectral imagery.

Arctic Exploration

 

 

 

 

 

 

Photo Source: CBC

With our current ability to provide hyperspectral sensor payloads for small satellites covering the VNIR (380 -1000 nm) and SWIR (950 – 1000 nm), it is clear that Headwall will continue to play an expanding role in the development of remote sensing capabilities throughout the world.

Tags: hyperspectral imaging, Headwall Photonics, Airborne, Remote Sensing, SWIR, VNIR, Satellites

Small UAVs - Precision agriculture & hyperspectral remote sensing

Posted by David Bannon on Mon, Apr 09, 2012

Micro Hyperspec UAV Picture 2Offering improvements in agricultural yields and precision farming, hyperspectral sensors allow producers and processors to make the foods we eat safer along with providing the advantages of higher quality and hopefully, better taste.  Based in Massachusetts, Headwall Photonics, designs and manufactures small, lightweight sensors that are deployed aboard airborne platforms ranging from piloted aircraft to unmanned aerial vehicles (UAVs). With experience developed within the military sector, the company has established quite a business enabling the commercial use of very small, cost-effective UAVs for remote sensing and agriculture applications.

In the same way that food-processing lines are evolving from straight-forward machine-vision systems to spectral imaging, many agriculturalists and food producers are moving beyond simple appearance and color measurement to more advanced hyperspectral imaging. The richness of the data collected offers farmers a sense of what to plant, where to plant, and when to harvest. High-value crops such as pecans, grapes, walnuts and others need to be managed with precision to yield a profitable harvest. Nutrient levels, ripeness, and disease conditions can be ‘seen’ by hyperspectral sensors based on the chemical “fingerprint” of the crops rather than on the visual appearance; thus offering the ability to implement cost-effective solutions early in the growth cycle of the harvest.

Since these imaging sensors can be and are rapidly being deployed aboard inexpensive UAVs, hundreds of acres can be surveyed and monitored very quickly. The data-processing power coupled to these hyperspectral sensors means that more actionable crop and agricultural information can be obtained. The result is better overall crop management across the farming and food production industries. Where famine relief is acute, airborne hyperspectral sensors quickly lead to better decisions about what crops to plant, where to plant them, and when to harvest them. The specific ‘spectral signatures’ of diseased plants, contaminants, and ripeness conditions mean that hyperspectral technology can clearly be used to ensure healthier foods for all and a more profitable and timely crop harvest.

As a previous topic, Headwall mentioned an important specialty crop in the United States being grape production and vineyard management. One of Headwall’s hyperspectral customers, VineView Scientific Aerial Imaging, is a company that uses high-resolution, scientifically calibrated data products to assist framers in crop uniformity optimization, irrigation management, and harvest planning. “Hyperspectral data allows us to provide more specific actionable information to our clients who manage high-value crops,” said Dr. Matthew Staid, President of Saint Helena, CA-based VineView. The Headwall airborne hyperspectral sensors can be mounted on small UAVs or manned aircraft and means that VineView cannot only map vigor or stress within crops but can better identify the specific causes of those stresses. 

Headwall continues to advance the agriculture and remote sensing industries through the deployment of cost-effective hyeprspectral sensors that have a positive impact on farmers, food processors, and agricultural research scientists around the world.

To speak with an application engineer, click here ...

Tags: hyperspectral imaging, Airborne, Remote Sensing, SWIR, agriculture

Surveying the Land Below: Hyperspectral Sensors go Airborne

Posted by Christopher Van Veen on Wed, Mar 14, 2012

Remote sensing is a very important application and perhaps the 'killer app' for hyperspectral imaging technology, particularly when it comes to airborne scientific techniques. With traditional roots in research, Headwall’s airborne hyperspectral sensors are considered an industry-standard research tool and have been routinely utilized for the study of such topics as climate change, environmental mapping and monitoring, biodiversity research, and studies of the effects of carbon emissions on the environment.
 
Headwall’s experience is that it often takes approximately 10 years for technology to roll out of the military/defense markets and be ready for commercial applications. One particular market note is the use of Headwall’s hyperspectral sensors for commercial remote sensing applications. This is proving to be a very large and significant market. For example, one of Headwall’s customers is VineView, a commercial airborne company located in California with a focus on providing precision agriculture information and aerial imagery to more than 800 vineyards in the western United States. Dr. Matthew Staid, President of VineView Scientific Aerial Imaging, is a leader in the utilization of hyperspectral imaging for the management of 'high-value crops.'  His company provides airborne remote sensing services to the winegrape industry consisting of hyperspectral, thermal, and infrared sensing data for precision farming and profitable agricultural management of vineyards.
 
VineViewVineView’s sensor needs are focused in two key areas – very high spatial resolution coupled with extremely fast data processing.  One key attribute of hyperspectral imaging is the amount of spectral and spatial data collected. To capitalize on the inherent value of hyperspectral data requires an ability to rapidly process all this data into a geo-rectified data set. Airborne hyperspectral solutions require high performance, aberration-corrected sensors as well as hyperspectral data-processing units to collect and 'package' this data.  These rapid data-acquisition capabilities allow VineView to expand aerial services beyond the winegrape industry and into areas such as citrus production, tree nuts, and cotton.
 
With the ability to 'see' beyond the visible spectrum of 380nm to 780nm, Headwall’s hyperspectral imagers are readily available and optimized for many different spectral regions to a base of worldwide customers. One common configuration deployed by a number of remote sensing customers is the use of a Hyperspec VNIR sensor and a Hyperspec SWIR sensor to cover the broad spectrum of 380 to 2500 nm.
Tags: Headwall Photonics, Airborne, Remote Sensing, Sensors, VineView